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The degenerate parabolic equation

In general, we consider the following degenerate parabolic equation.

Oru = (2%0zu)z, (t,z) e RT x (0,1),
u(t,0) =0, u(t,1)=U(t), teRT, (1)
U(O,.’L’) = uo(x), T € (07 1)

Where a € (0,1), the initial condition ug € L*(0,1) and U denotes the control.
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Previous Results

Theorem [L. Gagnon, P, Lissy & S. Marx (2021). STAM J. Control

Optim.]

There exists a discrete set . C R such that for any A > 0 with A € .7,
there exists C'(A\) > 0 and a feedback law U(t) = K (u(t)), where

K € L?(0,1), such that for any ug € L?(0, 1), there exists a unique
solution u of (18) that verifies moreover : for any ¢ > 0,

lu(t, Mlz20,1) < CN)|uollr20,1ye

ﬁ M. GUEYE (2014) Exact boundary controllability of 1-D parabolic and hyperbolic
degenerate equations., STAM J. Control Optim 52(4), 2037-2054.

ﬁ L. GAGNON, P. Lissy & S. MARX (2021) A Fredholm transformation for the rapid

stabilization of a degenerate parabolic equation, STAM J. Control Optim 59(5),
3828-3929.
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We want to prove a boundary rapid stabilization result for a degenerate
parabolic equation, in the case where the control is localized at x = 0.
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The degenerate parabolic equation

Stabilization problem

The stabilization problem is described by the following system :

Ou = (2%0p), (t,r) € RT x (0,1),
uw(t,0) =U(t), u(t,1) =0, teR", (2)
u(0,2) = wup(x), xz € (0,1).

Where « € (0,1), the initial condition uy € L?(0,1) and U denotes the
control.
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Theorem 1 [Lissy, Pierre, Moreno, C. (submitted, 2022.)]

There exists a discrete set . C R such that for any A > 0 with A\ & .,
there exists C'(A\) > 0 and a feedback law U(t) = K (u(t)), where

K € L?(0,1), such that for any ug € L?(0, 1), there exists a unique
solution u of (18) that verifies, for any ¢ > 0 :

llu(t, )lz2(0,1) < C(W)luollz20,e ™
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Degenerate operator

We define the spaces
Hy(0,1) := {f € L*(0,1) |3 f, € L*(0,1)},

and
Ha(0,1) := {f € Ha(0,1)] f(0) = f(1) = 0},
The unbounded operator A : D(A) ¢ L?(0,1) — L?(0,1) is given by :

Au = (2%Uy) g,
D(A) :={u € H} ,(0,1) | z%u, € H'(0,1)}.
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There exists a Hilbert basis {¢,, }nen+ of L?(0,1) and an increasing
sequence (Ap)nen+ of real positive numbers such that A, — +oo and

- A¢n = )\n(lsn- (3)

We have

Ap 1= (’fju,n)2a n e N*7 (4)J
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There exists a Hilbert basis {¢,, }nen+ of L?(0,1) and an increasing
sequence (Ap)nen+ of real positive numbers such that A, — +oo and

- A¢n = )\n(bn (3)
We have
Ay 1= (lfj,/’n)2, n € N*, (4)
and
1/2
Pn(z) = %x“—a)/%(ﬁ,m), ze(0,1), neN". (5
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Where v and « are two parameters given by

11—« 2—«

= dk:=
vi=o——ands 5

The derivative is given by
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Where v and « are two parameters given by

1-— 2 —
V::2_Zandf-c:: 2o¢. (6)J
The derivative is given by
2l€1/2 l—a _1ta . 1o | . _a
oY) = f,, (} 1 Ty (Guny™) + ¥ 2 Kjundy (Guny™)y 2] :
v\Jv,n

(7)

and A > 0 was chosen in such a way that

An = A#0, Ay — X # A, Ay — A # Ky, for any k,n € N, (S)J
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Bessel Functions

First kind

For a real number v, the Bessel functions are solutions of the following

differential equation

d? d
25 Sy (> =)y =0, z € (0,00),

dx? dx

Bessel functions of the first kind :
c9 (_1)k($/2)u+2k
9)

Jy(x) = Z

prt ET(v+k+1)’°

where I'(-) is the gamma function.
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Bessel functions of the first kind
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Figure 1: The first two Bessel functions
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Bessel functions of the second kind
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Figure 2: The first two Bessel functions
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Bessel functions of the second kind
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Figure 2: The first two Bessel functions

(cosvm)dy,(z) — J_p(x)
sin(vm)

Y, (z) = , ve(0,1). (10)J
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Orthogonality property

1 6nm .
| en™) e Guma)de = T2 ). (@)
0
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Orthogonality property

! 6nm .
/ 2Ty (Gunx”®) Iy (fume”)dz = XJL(Jv,n)Q' (11)
0

Lemma 1
For all (a,b) € R such that a # b,

| N

1
/ 2], (az)Y, (bz)dz = %& [, (Q)Y(5) — aJ(@) Y ()]
v “ (12)
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Lemma 2

We have
¢;L(1) = (2’@)1/2/43]'11,71,7 (13)

and

i g7 () — LoD
1m ES .
oot 0 Y S G, T+ )

There exist two constants C7 > 0 and Cs > 0 such that, for any
n € N*, we have
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Lemma 2

—~
—_
w
~

We have
én(1) = (26)2Kjum,

(1— a)(2x)24%,,

and
lim o), (y) =
S ") = B T G T + )

There exist two constants C7 > 0 and Cs > 0 such that, for any

n € N*, we have
C Ap — A C
Seln(2=2)|<S. (15)
n2 K n2
August 26, 2022
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Interpolation spaces

We define, for s € [0, 1] the spaces

D(AS) = {f = ian¢n € L2(07 1)

> Aral < oo} (16)

n=1 n=1
and
0 2
D(AS)' = {f = Zan¢n S @’(0, 1) % < oo} . (17)
n=1 n=1"T
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Backstepping Control Design

The degenerate parabolic equation :

Ou = (2%0pu), (t,r) € RT x (0,1),
w(t,0) =U(t), u(t,1) =0, teR", (18)
u(0,2) = wup(x), xz € (0,1).

Where « € (0,1), the initial contion uy € L?(0,1) and U denotes the
control.
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Backstepping Control Design

The target system

The target system is described by the following equation :

8tv
v(t,0)
v(0, x)

Claudia MORENO

(2%0,v) — Av,
v(t,1) =0,

vo(z),

Benasque

(t,z) € R* x (0,1),

teRT,
z € (0,1).
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Backstepping Control Design

The target system

The target system is described by the following equation :

Oy = (2%0,v)z — Mv, (t,x) € RT x (0,1),
v(t,0) =wo(t,1) =0, t e RT, , (19)
v(0,2) = vo(z), z € (0,1).
Let V(¢ fo (t,z)%dz, for any ¢t > 0
V(1) SV(0)e™® = |Pllf2q1y < e [lvoll72(o,1) (20)
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Backstepping transformation

We introduce the linear operator given by

1
Tf o flz) - /0 k(. 9) f(y)dy, (21)

Then
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Backstepping transformation

We introduce the linear operator given by

1
Tf o flz) - /0 k(. 9) f(y)dy,

Then

1
v=Tu:z+— u(t,z) — / k(z, y)u(t,y)dy,
0

verifies the target system.
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Kernel PDE

The kernel k has to satisfy the following system :

—(yky(2,9)y + (2%ks(2,9))z — Me(z,y) = —Momy, (2,) € (0,1)?,
Jim, gy (2, ) =0, (z,y) € (0,1)%,
k(z,0) —0, z € (0,1),
bz, 1) =0, z € (0,1),
k(1 y) =0, y e (0,1).

(23)

We can decompose the kernel k& formally as
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Kernel PDE

The kernel k has to satisfy the following system :

—(Yky(7,y))y + (@2 (2,Y))z — Ak(z,Y)

lim y%ky(z,y)
y+0+

k(z,0)

k(z,1)

k(1,y)

We can decompose the kernel k& formally as

= _/\530:1/7
=0,

=0,
:0’
:07

neN*

(z,y) € (0,1)%,
(z,y) € (0,1)%,
z € (0,1),
z € (0,1),
y € (0,1).
(23)

Claudia MORENO

Benasque

August 26, 2022



We obtain for n € N* the system

_Anwn(x) + (xa wd}n(x))z - A¢n($) = _A¢n($)» T € (Ov 1)7

¢n(1) =5 (25)
im y® >0 ¢n(2)dr,(y) =0, z € (0,1).
y—0 neN*
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We obtain for n € N* the system

_)\nwn(x) + (xaazd}n(x))z - )\wn(m) = _A¢n($)’ T e (0, 1)7

Yn(1) =0, (25)
Jim v 3 vn(@)0n () =0, € (0,1).

Using the change of unknowns v,, = ¢,, — &, we get the system

—(An = V(@) — (2060 (2))e =0, z€(0,1),
&n(1) =0,

lim y* 3 & (@)¢(y) = lim y° 3 ér(@)(y), € (0,1).
y—0 neN* y—0 neN*

(26)
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Sturm-Liouville

The Sturm-Liouville problem is described by the following equation

—(zy'(x))’
y(0)
y(1)

py(z), z€(0,1), peR,
0, (27)
0.

The problem (27) is a particular case of the Bessel equation

22y + axy' + (ba! + )y =0, z € (0,00)

where a, b, and ¢ are real numbers and [ # 0. Then, we infer

y(o,p) =27079z, (m ) , & € (0,00), J
K

where Z, is any Bessel function general solution.
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Sturm-Liouville

We obtain that the solution of system (26) can be written under the
form

En(z) = Apzi-9) g, <_\W—/\mn) Bty (_,/m K),

K K

where An, Bn are real numbers and &,(0) = 1, then

L, (52)

K

Claudia MORENO
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We consider

1—o J An—A
~ 2 2 " — v e » —
Enla) =522, (gxﬂ 5 ( )YV < ) /\xn> ’
I (Ju,n) K Y, ( ,\Z—,\) K
(28)
and 1, under the form
Y = ¢n — Cnénv (29)J

with ¢, € R to be determined.
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Existence and uniqueness of the kernel

Theorem 2 [Lissy, Pierre, Moreno, C. (submitted, 2022.)]

Assume that (8) holds. There exists a unique sequence (¢, )pen+ such
that
cn — 1 € 1?(N¥) (30)

and such that for any n € N*, the corresponding 9, defined in (29)
verifies (25).

Proposition 1 [Lissy, Pierre, Moreno, C. (submitted, 2022.)]
The family {(,\n)%ﬁén}new is a Riesz basis in D(A%Jri)’.
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Linear Operators

We define the linear operators B : R — D(AY/2+3/4) as follows :

<Bz’(10>D(AV/2+3/4)’,D(AV/2+3/4) = le_i>%1+ ZEQQD/(:C)’ NS D(AV/2+3/4).

(31)
and K : L?(0,1) — R given by

1
Kfirs /0 £(0,9)f (W) dy. (32)

The transformation K belongs to (L?(0,1))".

\ N
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Linear Operators

Setting U = Ku, the degenerate equation can be rewritten as

{ ou = (A+BK)u, te(0,7T),
u(0,-) = wo, xz € (0,1).

We define the spaces

H) (0,1) :={f € H(0,1)| f(1) = 0}

D(A)r = {f € Ho p(0,1)|2"f; € H'(0,1)},

and
D(A+ BK)={f € D(A)L|f(0)=Kf}.
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Let us remember that the operator T : L?(0,1) — L?(0,1) is given by
1
Tf 0 fa) - [ Ky (33)
0

The transformation 7 belongs to .Z(L%(0,1)). J
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Let us remember that the operator T : L?(0,1) — L?(0,1) is given by
1
Tf 0 fa) - [ Ky (33)
0

The transformation T belongs to .Z(L?(0,1)). J

1. TB=DB in D(A5+1).

2. T(A+ BK)f = (A—XTf in L?(0,1).
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Let us remember that the operator T : L?(0,1) — L?(0,1) is given by
1
Tf 0 @)= [ ) (33)

The transformation T belongs to .Z(L?(0,1)). J

1. TB=DB in D(A5+1).

2. T(A+ BK)f = (A—XTf in L?(0,1).

The transformation 7T is invertible from L%(0,1) to L?(0,1). J
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Proof of Theorem 1.

Steps

@ 1. The operator A + BK is dissipative.
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Proof of Theorem 1.

Steps
@ 1. The operator A + BK is dissipative.

@ 2. A+ BK is maximal.

@ 3. Exponential stability.

Exponential stability

Using that v = T'w and (20), we have, for all t > 0,

1
[lu(t, Nl r20,1y) =NT™ Tult, )lr20,1)
< ||T71||L2(0,1)||Tu(t7 Mr2c0,1)

1 Y
< T Yeeeoane NTuoll Lz (o,1y)

—1 —A
<SNT ez, 1T z2c0,1ye " ol 12 (0,1)-

This concludes Step 3 and the proof of Theorem 1.
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