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The degenerate parabolic equation

In general, we consider the following degenerate parabolic equation. ∂tu = (xα∂xu)x, (t, x) ∈ R+ × (0, 1),
u(t, 0) = 0, u(t, 1) = U(t), t ∈ R+,
u(0, x) = u0(x), x ∈ (0, 1).

(1)

Where α ∈ (0, 1), the initial condition u0 ∈ L2(0, 1) and U denotes the control.
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Previous Results

Theorem [L. Gagnon, P, Lissy & S. Marx (2021). SIAM J. Control
Optim.]

There exists a discrete set S ⊂ R such that for any λ > 0 with λ 6∈ S ,
there exists C(λ) > 0 and a feedback law U(t) = K(u(t)), where
K ∈ L2(0, 1)′, such that for any u0 ∈ L2(0, 1), there exists a unique
solution u of (18) that verifies moreover : for any t > 0,

||u(t, ·)||L2(0,1) ≤ C(λ)||u0||L2(0,1)e
−λt

M. Gueye (2014) Exact boundary controllability of 1-D parabolic and hyperbolic

degenerate equations., SIAM J. Control Optim 52(4), 2037–2054.

L. Gagnon, P. Lissy & S. Marx (2021) A Fredholm transformation for the rapid

stabilization of a degenerate parabolic equation, SIAM J. Control Optim 59(5),
3828–3929.
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Goal

We want to prove a boundary rapid stabilization result for a degenerate
parabolic equation, in the case where the control is localized at x = 0.
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The degenerate parabolic equation
Stabilization problem

The stabilization problem is described by the following system :
∂tu = (xα∂xu)x, (t, x) ∈ R+ × (0, 1),
u(t, 0) = U(t), u(t, 1) = 0, t ∈ R+,
u(0, x) = u0(x), x ∈ (0, 1).

(2)

Where α ∈ (0, 1), the initial condition u0 ∈ L2(0, 1) and U denotes the
control.
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Theorem 1 [Lissy, Pierre, Moreno, C. (submitted, 2022.)]

There exists a discrete set S ⊂ R such that for any λ > 0 with λ 6∈ S ,
there exists C(λ) > 0 and a feedback law U(t) = K(u(t)), where
K ∈ L2(0, 1)′, such that for any u0 ∈ L2(0, 1), there exists a unique
solution u of (18) that verifies, for any t ≥ 0 :

||u(t, ·)||L2(0,1) ≤ C(λ)||u0||L2(0,1)e
−λt
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Degenerate operator

We define the spaces

H1
α(0, 1) := {f ∈ L2(0, 1) |x

α
2 fx ∈ L2(0, 1)},

and
H1
α,0(0, 1) := {f ∈ H1

α(0, 1) | f(0) = f(1) = 0},

The unbounded operator A : D(A) ⊂ L2(0, 1)→ L2(0, 1) is given by :{
Au := (xαux)x,

D(A) := {u ∈ H1
α,0(0, 1) |xαux ∈ H1(0, 1)}.
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There exists a Hilbert basis {φn}n∈N∗ of L2(0, 1) and an increasing
sequence (λn)n∈N∗ of real positive numbers such that λn → +∞ and

−Aφn = λnφn. (3)

We have

λn := (κjν,n)2, n ∈ N∗, (4)

and

φn(x) =
(2κ)1/2

J ′ν(jν,n)
x(1−α)/2Jν(jν,nx

κ), x ∈ (0, 1), n ∈ N∗. (5)
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Where ν and κ are two parameters given by

ν :=
1− α
2− α

and κ :=
2− α

2
. (6)

The derivative is given by

φ′n(y) =
(2κ)1/2

J ′ν(jν,n)

[
1− α

2
y−

1+α
2 Jν(jν,ny

κ) + y
1−α
2 κjν,nJ

′
ν(jν,ny

κ)y−
α
2

]
,

(7)

and λ > 0 was chosen in such a way that

λn − λ 6= 0, λn − λ 6= λk, λn − λ 6= κ2y2
ν,k for any k, n ∈ N∗, (8)
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Bessel Functions
First kind

For a real number ν, the Bessel functions are solutions of the following
differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0, x ∈ (0,∞),

Bessel functions of the first kind :

Jν(x) =

∞∑
k=0

(−1)k(x/2)ν+2k

k!Γ(ν + k + 1)
, (9)

where Γ(·) is the gamma function.

Claudia MORENO Benasque August 26, 2022 11



Bessel functions of the first kind
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Bessel functions of the second kind

Yν(x) :=
(cos νπ)Jν(x)− J−ν(x)

sin(νπ)
, ν ∈ (0, 1). (10)
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Properties

Orthogonality property∫ 1

0
x1−αJν(jν,nx

κ)Jν(jν,mx
κ)dx =

δnm
2κ

J ′ν(jν,n)2. (11)

Lemma 1

For all (a, b) ∈ R such that a 6= b,∫ 1

0
xJν(ax)Yν(bx)dx =

1

a2 − b2
[
bJν(a)Y ′ν(b)− aJ ′ν(a)Yν(b)

]
− lim
z→0+

z

a2 − b2
[
bJν(az)Y ′ν(bz)− aJ ′ν(az)Yν(bz)

]
.

(12)
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Lemma 2

We have
φ′n(1) = (2κ)1/2κjν,n, (13)

and

lim
y 7→0+

yαφ′n(y) =
(1− α)(2κ)

1
2 jνν,n

2νJ ′ν(jν,n)Γ(1 + ν)
. (14)

There exist two constants C1 > 0 and C2 > 0 such that, for any
n ∈ N∗, we have

C1

n
3
2

6

∣∣∣∣Jν (√λn − λκ

)∣∣∣∣ 6 C2

n
3
2

. (15)
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Interpolation spaces

We define, for s ∈ [0, 1] the spaces

D(As) =

{
f =

∞∑
n=1

anφn ∈ L2(0, 1)

∣∣∣∣∣
∞∑
n=1

λ2s
n a

2
n <∞

}
(16)

and

D(As)′ =

{
f =

∞∑
n=1

anφn ∈ D ′(0, 1)

∣∣∣∣∣
∞∑
n=1

a2
n

λ2s
n

<∞

}
. (17)
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Backstepping Control Design

The degenerate parabolic equation :
∂tu = (xα∂xu)x, (t, x) ∈ R+ × (0, 1),
u(t, 0) = U(t), u(t, 1) = 0, t ∈ R+,
u(0, x) = u0(x), x ∈ (0, 1).

(18)

Where α ∈ (0, 1), the initial contion u0 ∈ L2(0, 1) and U denotes the
control.
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Backstepping Control Design
The target system

The target system is described by the following equation :
∂tv = (xα∂xv)x − λv, (t, x) ∈ R+ × (0, 1),
v(t, 0) = v(t, 1) = 0, t ∈ R+,
v(0, x) = v0(x), x ∈ (0, 1).

, (19)

Let V (t) :=
∫ 1

0 v(t, x)2dx, for any t > 0

V (t) 6 V (0)e−2λt =⇒ ||v||2L2(0,1) ≤ e
−2λt||v0||2L2(0,1) (20)
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Backstepping transformation

We introduce the linear operator given by

Tf : x 7−→ f(x)−
∫ 1

0
k(x, y)f(y)dy, (21)

Then

v = Tu : x 7−→ u(t, x)−
∫ 1

0
k(x, y)u(t, y)dy, (22)

verifies the target system.
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Kernel PDE

The kernel k has to satisfy the following system :

−(yαky(x, y))y + (xαkx(x, y))x − λk(x, y) = −λδx=y, (x, y) ∈ (0, 1)2,
lim
y→0+

yαky(x, y) = 0, (x, y) ∈ (0, 1)2,

k(x, 0) = 0, x ∈ (0, 1),
k(x, 1) = 0, x ∈ (0, 1),
k(1, y) = 0, y ∈ (0, 1).

(23)
We can decompose the kernel k formally as

k(x, y) =
∑
n∈N∗

ψn(x)φn(y). (24)
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Kernel

We obtain for n ∈ N∗ the system
−λnψn(x) + (xα∂xψn(x))x − λψn(x) = −λφn(x), x ∈ (0, 1),
ψn(1) = 0,
lim
y→0+

yα
∑
n∈N∗

ψn(x)φ′n(y) = 0, x ∈ (0, 1).
(25)

Using the change of unknowns ψn = φn − ξn, we get the system


−(λn − λ)ξn(x)− (xα∂xξn(x))x = 0, x ∈ (0, 1),
ξn(1) = 0,
lim
y→0+

yα
∑
n∈N∗

ξk(x)φ′k(y) = lim
y→0+

yα
∑
n∈N∗

φk(x)φ′k(y), x ∈ (0, 1).

(26)
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Sturm-Liouville

The Sturm-Liouville problem is described by the following equation
−(xαy′(x))′ = µy(x), x ∈ (0, 1), µ ∈ R,
y(0) = 0,
y(1) = 0.

(27)

The problem (27) is a particular case of the Bessel equation

x2y′′ + axy′ + (bxl + c)y = 0, x ∈ (0,∞)

where a, b, and c are real numbers and l 6= 0. Then, we infer

y(x, µ) = x
1
2 (1−α)Zν

(√
µxκ

κ

)
, x ∈ (0,∞),

where Zν is any Bessel function general solution.
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Sturm-Liouville

We obtain that the solution of system (26) can be written under the
form

ξn(x) = Anx
1
2

(1−α)Jν

(√
λn − λ
κ

xκ
)

+Bnx
1
2

(1−α)Yν

(√
λn − λ
κ

xκ
)
,

where An,Bn are real numbers and ξn(0) = 1, then

Bn = −
AnJν

(√
λn−λ
κ

)
Yν

(√
λn−λ
κ

) .
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We consider

ξ̃n(x) =

√
2κx

1−α
2

J ′(jν,n)

Jν (√λn − λ
κ

xκ
)
−
Jν

(√
λn−λ
κ

)
Yν

(√
λn−λ
κ

)Yν (√λn − λ
κ

xκ
) ,

(28)

and ψn under the form

ψn = φn − cnξ̃n, (29)

with cn ∈ R to be determined.
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Existence and uniqueness of the kernel

Theorem 2 [Lissy, Pierre, Moreno, C. (submitted, 2022.)]

Assume that (8) holds. There exists a unique sequence (cn)n∈N∗ such
that

cn − 1 ∈ l2(N∗) (30)

and such that for any n ∈ N∗, the corresponding ψn defined in (29)
verifies (25).

Proposition 1 [Lissy, Pierre, Moreno, C. (submitted, 2022.)]

The family {(λn)
ν
2

+ 1
4 ξ̃n}n∈N∗ is a Riesz basis in D(A

ν
2

+ 1
4 )′.
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Linear Operators

We define the linear operators B : R→ D(Aν/2+3/4)′ as follows :

〈Bz, ϕ〉D(Aν/2+3/4)′,D(Aν/2+3/4) = z lim
x→0+

xαϕ′(x), ϕ ∈ D(Aν/2+3/4).

(31)
and K : L2(0, 1)→ R given by

Kf : x 7−→
∫ 1

0
k(0, y)f(y)dy. (32)

The transformation K belongs to (L2(0, 1))′.

Claudia MORENO Benasque August 26, 2022 26



Linear Operators

Setting U = Ku, the degenerate equation can be rewritten as{
∂tu = (A+BK)u, t ∈ (0, T ),
u(0, ·) = u0, x ∈ (0, 1).

We define the spaces

H1
α,R(0, 1) := {f ∈ H1

α(0, 1) | f(1) = 0}

,
D(A)R := {f ∈ H1

α,R(0, 1) |xαfx ∈ H1(0, 1)},

and
D(A+BK) = {f ∈ D(A)L | f(0) = Kf}.
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Let us remember that the operator T : L2(0, 1)→ L2(0, 1) is given by

Tf : x 7−→ f(x)−
∫ 1

0
k(x, y)f(y)dy. (33)

The transformation T belongs to L (L2(0, 1)).

Identities

1. TB = B in D(A
ν
2

+ 3
4 )′.

2. T (A+BK)f = (A− λI)Tf in L2(0, 1).

The transformation T is invertible from L2(0, 1) to L2(0, 1).
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Proof of Theorem 1.

Steps

1. The operator A+ BK is dissipative.

2. A+ BK is maximal.

3. Exponential stability.

Exponential stability

Using that v = Tu and (20), we have, for all t ≥ 0,

||u(t, ·)||L2(0,1) =||T−1
Tu(t, ·)||L2(0,1)

≤ ||T−1||L2(0,1)||Tu(t, ·)||L2(0,1)

≤ ||T−1||L(L2(0,1))e
−λt||Tu0||L(L2(0,1))

≤ ||T−1||L(L2(0,1))||T ||L2(0,1)e
−λt||u0||L2(0,1).

This concludes Step 3 and the proof of Theorem 1.
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Exponential stability

Using that v = Tu and (20), we have, for all t ≥ 0,

||u(t, ·)||L2(0,1) =||T−1
Tu(t, ·)||L2(0,1)

≤ ||T−1||L2(0,1)||Tu(t, ·)||L2(0,1)

≤ ||T−1||L(L2(0,1))e
−λt||Tu0||L(L2(0,1))

≤ ||T−1||L(L2(0,1))||T ||L2(0,1)e
−λt||u0||L2(0,1).

This concludes Step 3 and the proof of Theorem 1.
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Thank you for your attention.
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