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Motivation and Preliminary

Motivation
System of transport equations with memory on a network of scattered ramification nodes

Let us consider the following system of transport equations on a network:

(ΣTN)


∂

∂t
zj (t,x ,v) = v

∂

∂x
zj (t,x ,v)+qj (x ,v).zj (t,x ,v), t ≥ 0, (x ,v) ∈Ωj ,

zj (0,x ,v) = fj (x ,v)≥ 0, zj (θ,x ,v) = ϕj (θ,x ,v)≥ 0, θ ∈ [−r ,0] (x ,v) ∈Ωj , (IC)

ıout
ij zj (t,1, ·) = wij

∑
k∈M ıinik [Jk (zk )(t,0, ·)+Lk (zk (t + ·, ·, ·))]+

∑
l∈Nc

bil ul (t, .), t ≥ 0, (BC)

for i ∈ {1, . . . ,N} := N , j ∈ {1, . . . ,M} := M and l ∈ {1, . . . ,n} := Nc with M ≥ N ≥ n, where we set
Ωj := [0, lj ]× [vmin,vmax], lj > 0. Here, the vertex delay operators Lj are given by

Lj (ϕj )(x ,v) =
∫ lj

0

∫ vmax

vmin

∫ 0

−r
d [ηk ](θ)ϕk (θ,x ,v)dvdx , (x ,v) ∈Ωj , ϕj ∈W 1,p([−r ,0];Lp(Ωj )).

where the first integral is in the Lebesgue-Stieltjes sense. Moreover, the scattering operators Jj are given by

(Jf )j (x ,v) =
∫ vmax

vmin

`j (x ,v ,v
′)fj (x ,v

′)dv ′, (x ,v) ∈Ωj , fj ∈ Lp(Ωj ),

where `j ∈ L∞(Ωj × [vmin,vmax]) for every j ∈M .
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Motivation and Preliminary

Motivation
size-structured population model with delayed birth process

We consider the following size-structured population model with delayed birth process:

(ΣSPM)


∂z(t,s)

∂t + ∂q(s)z(t,s)
∂s =−µ(s)z(t,s), t ≥ 0, s ∈ (0,s∗)

z(0,s) = f (s)≥ 0, z(θ,s) = ϕ(θ,s)≥ 0, θ ∈ [−r ,0], s ∈ (0,s∗)

g(0)z(t,0) =
∫s∗

0

∫0
−r β(s)z(t +θ,s)dη(θ)ds+bu(t), t ≥ 0.

Here z(t,s) represents the population density of certain species of size s ∈ (0,s∗) at time t ≥ 0, where s∗ > 0
is the maximum size of of any individual in the population. The function q(s) is the growth rate of size over
time and the size dependent functions β and µ denote the fertility and mortality, respectively. By b, we denotes
the boundary control operator, u define the control functions and (f ,ϕ) are the initial distributions of our target
population.
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Motivation and Preliminary

Motivation

Can be transformed as the following perturbed boundary value control system

(AGΓ)


ż(t) =Amz(t), t > 0,

z(0) = x ≥ 0,

Gz(t) = Γz(t)+Ku(t), t > 0,

where the state variable z(.) takes values in a Banach lattice X and the control function u(·) is given in the
Banach space Lp([0,+∞);U). Here,

The maximal (differential) operator Am : D(Am)⊂ X → X is closed and densely defined;

K is a bounded linear operator from U into ∂X (both are Banach lattices),

G,Γ : D(Am)→ ∂X are linear continuous trace operators.
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Motivation

Can be transformed as the following perturbed boundary value control system

(AGΓ)


ż(t) =Amz(t), t > 0,

z(0) = x ≥ 0,

Gz(t) = Γz(t)+Ku(t), t > 0,

where the state variable z(.) takes values in a Banach lattice X and the control function u(·) is given in the
Banach space Lp([0,+∞);U). Here,

The maximal (differential) operator Am : D(Am)⊂ X → X is closed and densely defined;

K is a bounded linear operator from U into ∂X (both are Banach lattices);

G,Γ : D(Am)→ ∂X are linear continuous trace operators.

Goal

To (AGΓ) we associate the following operator

A = Am, D(A) = {x ∈ D(Am) : Gx = Γx}.

Positivity and Well-posedness of (Σ).
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Motivation and Preliminary

Preliminary

Let E be a real vector space and ≤ be a partial order on this space. Then E is said to be an ordered vector
space if it satisfies the following properties:

If f ,g ∈ E and f ≤ g, then f +h ≤ g+h for all h ∈ E .

If f ,g ∈ E and f ≤ g, then αf ≤ αg for all α≥ 0.

If, in addition, E is lattice with respect to the partial ordered, that is, sup{f ,g} and inf{f ,g} exist for all f ,g ∈ E ,
then E is said to be a vector lattice. For f ∈ E , the positive part of f is defined by f+ := sup{f ,0}, the negative
part of f by f− := sup{−f ,0} and the absolute value of f by |f | := sup{f ,−f }, where 0 is the zero element of E .
The set of all positive elements of E , denoted by E+, is a convex cone with vertex 0. In particular, it generates
a canonical ordering ≤ on E which is given by: f ≤ g if and only if g− f ∈ E+. For each f ,g ∈ E with f ≤ g,
the set [f ,g] = {h ∈ E : f ≤ h ≤ g } is called an order interval. A norm complete vector lattice E such that its
norm satisfies the following property

|f |≤ |g| ⇒ ‖f‖ ≤ ‖g‖

for f ,g ∈ X , is called Banach lattice. If E is a Banach lattice, its topological dual E ′, endowed with the dual
norm and the dual order, is also a Banach lattice.
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Motivation and Preliminary

Preliminary

A Banach lattice E is said to be AL-space whenever its norm is additive on the positive cone. A Banach lattice
E is said to be a KB-space (Kantorovič-Banach space) whenever every increasing norm bounded sequence
of E+ is norm convergent. Important examples of KB-spaces are reflexive Banach lattices and AL-spaces. A
norm of a Banach lattice is order continuous if for each generalized sequence (xα) such that xα ↓ 0 in E , the
sequence (xα) converges to 0 for the norm ‖ · ‖, where the notation xα ↓ 0 means that the sequence (xα) is
decreasing (in symbol ↓), its infimum exists and inf(xα) = 0. Note that each KB-space has an order
continuous norm, but a Banach lattice with an order continuous norm is not necessary a KB-space.
A vector lattice E is called order (or Dedekind) complete if every nonempty bounded above subset has a
supremum or equivalently if any nonnegative generalized sequence (xα) has a supremum in E , that is,
whenever 0≤ xα ↑≤ x implies the existence of sup{xα}. Here, the notation xα ↑≤ x means that xα is
increasing (in symbol ↑) and xα ≤ x for all α. As an example, every Banach lattice with an order continuous
norm is order complete.
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Motivation and Preliminary

Preliminary

Now, if we denote by L(E ,F) the Banach algebra of all linear bounded operators from an order Banach space
E to an order Banach space F , then an operator P ∈ L(E ,F) is positive if PE+ ⊂ F+.
An everywhere defined positive operator from a Banach lattice to a normed vector lattice is bounded. The set
of all positive operators from a Banach lattice E to another Banach lattice F , denoted by L+(E ,F), is a
convex cone in the space L(E ,F). This cone, however, in general does not generate L(E ,F). This fact
motivates the following definition.

Definition

Let E ,F be ordered Banach spaces. An operator P ∈ L(E ,F) is said to be regular, if there exist
P1,P2 ∈ L(E ,F) positive such that P = P1 −P2.

The vector space of all regular operators P ∈ L(E ,F) is denoted by L r (E ,F). Moreover, if E ,F are Banach
lattices such that F is order complete, then L r (E ,F) under the norm

‖P‖r := ‖|P|‖L(E ,F)
, (called the r-norm)

is an ordered complete Banach lattice, where |P| ∈ L(E ,F) denotes the so-called modulus operator defined
by |P| := sup{P,−P}

C.D. Aliprantis and O. Burkinshaw, Positive operators, Pure and Applied Mathematics, 119. Academic
Press. Inc., Orlando FL. (1985).

H.H. Schaefer, Banach lattices and positive operators. Springer-Verlag, Berlin-Heidelberg (1974).
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Motivation and Preliminary

Preliminary

Now, let X be a real Banach lattice and (A,D(A)) the generator of a C0-semigroup T := (T (t))t≥0 on X . The
type of T is defined as ω0 := inf{t−1 log‖T (t)‖ : t > 0}. We denote by ρ(A) the resolvent set of A, i.e., the set
of all µ ∈ C such that µ−A is invertible, and by R(µ,A) := (µ−A)−1 the resolvent operator of A. The
complement of ρ(A), is called the spectrum and is denoted by σ(A) := C\ρ(A). The so-called spectral radius
of the operator A is defined by r(A) := sup{|µ| : µ ∈ σ(A)}. The spectral bound s(A) of A is defined by
s(A) := sup{<e µ : µ ∈ σ(A)}.

Definition

A linear operator (A,D(A)) on a Banach lattice X is called resolvent positive if there exists ω ∈ R such that
(ω,∞)⊆ ρ(A) and R(µ,A)≥ 0 for each µ > ω.

Moreover, a C0-semigroups on a Banach lattice is positive if and only if the corresponding generator (A,D(A))
is resolvent positive. On the other hand, the extrapolation space associated with X and A, denoted by X−1, is
the completion of X with respect to the norm ‖x‖−1 := ‖R(µ,A)x‖ for x ∈ X and some µ ∈ ρ(A). Note that the
choice of µ is not important, since by the resolvent equation different choices lead to equivalent norms on X−1.

Semigroup Frorum, (Bátkai et. all, 2018)

X+ = X+,−1 ∩X .

The unique extension of T on X−1 is a C0-semigroup which we denote by T−1 := (T−1(t))t≥0 and whose
generator is denoted by A−1. Note that T−1 is positive whenever T is.
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Boundary control system

Boundary control system

Consider the following boundary control system

(CS)

{
ż(t) = Amz(t), z(0) = x , t > 0,

Gz(t) = v(t), t > 0,

for x ∈ X+ and v ∈ Lp
+(R+;∂X), where we recall that X ,∂X are Banach lattices.

Main Assumptions:

H1. A := (Am)|D(A) with D(A) = kerG, generates a strongly continuous positive semigroup T := (T (t))t≥0

on X ;

H2. Range(G) = ∂X and Γ is positive.
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Boundary control system

For any µ ∈ ρ(A), we have
D(Am) = D(A)⊕ker(µ−Am)

and the following inverse

Dµ :=
(
G|ker(µ−Am)

)−1 ∈ L(∂X ,X)

exists. Now we define the control operator

B := (µ−A−1)Dµ ∈ L(∂X ,X−1), µ ∈ ρ(A).

G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213-229.

Dycon Benasque IX Partial differential equations, optimal design and numerics, Benasque August 26, 2022 14 / 39



Boundary control system

Boundary control system

The system (CS) is reformulated as the following distributed one

ż(t) = A−1z(t)+Bv(t), z(0) = x , t ≥ 0.
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Boundary control system

Boundary control system

The system (CS) is reformulated as the following distributed one

ż(t) = A−1z(t)+Bv(t), z(0) = x , t ≥ 0.

An integral solution of the above equation is given by: z(t) = T (t)x +Φt v ∈ X−1, for any t ≥ 0, x ∈ X
and v ∈ Lp([0,+∞),∂X), where

Φt v :=

∫ t

0
T−1(t − s)Bv(s)ds (∗).

An operator B ∈ L(∂X ,X−1) is called Lp-admissible control operator for A if, for some τ > 0, the
operator RangeΦτ ⊂ X . In particular, z(·) ∈ C(R+,X) for all x ∈ X and v ∈ Lp([0,+∞),∂X).

Let Bp(∂X ,X ,T) denote the vector space of all Lp-admissible control operators B, which is a Banach
space with the norm

‖B‖Bp := sup
‖v‖

Lp([0,τ];∂X)
≤1

∥∥∥∥∫ τ

0
T−1(τ− s)Bv(s)ds

∥∥∥∥ ,
where τ > 0 is fixed.
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Boundary control system

Boundary control system

We have the following characterization of the well-posedness of equation (CS).

Proposition (Yassine, 2022)

Let X ,∂X be Banach lattices, let (A,D(A)) generates a strongly continuous semigroup T on X and
B ∈ L(∂X ,X−1). Then for every x ∈ X and v ∈ Lp

loc(R+;∂X), the system (CS) has a unique solution
z(·) ∈ C(R+;X) if one of the following equivalent assertions holds.

(i) for any x ∈ X+ and v ∈ Lp
+(R+;∂X), the solution z(·) of (CS) remains in X+.

(ii) T is a positive and for some τ > 0, Φτv ∈ X+ for all v ∈ Lp
+(R+;∂X).
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Boundary control system

We have the following characterization of the well-posedness of equation (CS).

Proposition (Yassine, 2022)

Let X ,∂X be Banach lattices, let (A,D(A)) generates a strongly continuous semigroup T on X and
B ∈ L(∂X ,X−1). Then for every x ∈ X and v ∈ Lp

loc(R+;∂X), the system (CS) has a unique solution
z(·) ∈ C(R+;X) if one of the following equivalent assertions holds.

(i) for any x ∈ X+ and v ∈ Lp
+(R+;∂X), the solution z(·) of (CS) remains in X+.

(ii) T is a positive and for some τ > 0, Φτv ∈ X+ for all v ∈ Lp
+(R+;∂X).

For α > s(A), let v ∈ Lp
α(R+;∂X), the space of all functions of the form v(t) = eαt u(t), where u ∈ Lp(R+;∂X).

Then, u and z from (CS) have Laplace transforms related by

ẑ(µ) = R(µ,A)x +(̂Φ·u)(µ), with (̂Φ·u)(µ) = R(µ,A−1)Bv̂(µ),

for all <e µ > α, where v̂ denote the Laplace transform of v .

Lemma

Let X ,∂X be Banach lattices and let T be a positive C0-semigroup on X . Then, we have B is positive iff
Dµ := R(µ,A−1)B is positive for all µ > s(A), iff Φt is positive for all t ≥ 0.
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Boundary control system

Boundary control system

Observation

One could relax the definition of Lp-admissible positive control operators to Φτ Lp
+(R+;∂X)⊂ X+, for

some τ≥ 0.

It is not difficult to see that Bp,+(∂X ,X ,T) is the positive convex cone in Bp(∂X ,X ,T).
Therefore it generates the order: for B,B ′ ∈Bp(∂X ,X ,T), we have B ′ ≤ B whenever
B−B ′ ∈Bp,+(∂X ,X ,T).

Lemma (Yassine, 2022)

Let X ,∂X be Banach lattices and T be a positive C0-semigroup on X , and let Φτ be given by (*). If
B ∈ L r (∂X ,X−1) is Lp-admissible, then

Φτ ∈ L(Lp(R+;∂X),X)∩L r (Lp(R+;∂X),X−1)

for all τ≥ 0. Moreover, if there exist B1,B2 ∈Bp,+(∂X ,X ,T) such that B = B1 −B2, then
Φτ ∈ L r (Lp(R+;∂X),X) for all τ≥ 0.
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Boundary control system

Boundary control system

Result 1 (Yassine, 2022)

Let X ,∂X be Banach lattices and T be a positive C0-semigroup on X . Define the vector space

Br
p(∂X ,X ,T) := {B ∈ L r (∂X ,X−1) : Φτ ∈ L r (Lp(R+;∂X),X), ∀τ≥ 0 } ,

the space of all Lp-admissible regular control operators. Then, the following vector space equality holds:

Br
p(∂X ,X ,T) = Bp,+(∂X ,X ,T)−Bp,+(∂X ,X ,T).

Moreover if X , in addition, is order complete, then Br
p(∂X ,X ,T) is an order complete Banach lattice under the

norm

‖B‖Br
p
= sup

{
‖|Φτ|v‖ : v ≥ 0, ‖v‖

Lp([0,τ];∂X)
≤ 1
}
.

where τ > 0 is fixed.
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Boundary control system

Boundary control system
Result 1

Remark

It is to be that the extrapolation space X−1 is not, in general, a Banach lattice (more precisely, a vector lattice).
A striking consequence of the above observation is that L r (∂X ,X−1) cannot be expected to be a Banach
lattice. On the other hand, we have the following vector subspace inclusions:

L r (∂X ,X) ⊆ L(∂X ,X)

∩ ∩
Br

p(∂X ,X ,T) ⊂ Bp(∂X ,X ,T)

∩ ∩
L r (∂X ,X−1) ⊆ L(∂X ,X−1).

A. Bátkai, B. Jacob, J. Voigt, and J. Wintermayr, Perturbation of positive semigroups on AM-spaces.
Semigroup Forum. 96 (2018) 33-347.
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Boundary control system

Boundary control system
Sketch of proof

Step 1: We show the existence of |B| in the canonical order of Br
p(∂X ,X ,T).

Abstract control system

Let X ,∂X be Banach lattices. An abstract control system on X ,∂X is a pair (T,Φ) such that

Φτ+t v = T (τ)Φt v|[0,t]+Φτv(·+ t), (1)

for τ, t ≥ 0 and v ∈ Lp
+([0,τ+ t],∂X), where Φ := (Φτ)τ≥0 is a family of bounded operators from Lp(R+;∂X)

to X .

Lemma (Yassine, 2022)

Let X ,∂X be Banach lattices such that X is order complete and let T be a positive C0-semigroup on X .
Assume that (T,Φ) is an abstract control system on X ,∂X such that Φτ ∈ L r (Lp(R+;∂X),X) for all τ≥ 0.
Then, for each τ≥ 0, there exist unique Φ+

τ ,Φ−
τ ∈ L+(Lp(R+;∂X),X) splitting Φτ as Φτ = Φ+

τ −Φ−
τ and

satisfying the composition property (1).
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Boundary control system

Boundary control system
Sketch of proof

Let B ∈Br
p(∂X ,X ,T) and let Φτ ∈ L r (Lp(R+;∂X),X) be the corresponding input map. Thus, for each τ≥ 0,

the modulus of Φτ exists (in the canonical ordering of L(Lp(R+;∂X),X)) and is given by

|Φτ|= Φ
+
τ +Φ

−
τ , Φτ = Φ

+
τ −Φ

−
τ .

Step 2: We establish that Br
p(∂X ,X ,T) is order complete. Indeed, let (Bα) be a set of nonnegative elements

such that 0≤ Bα ↑≤ B holds in Br
p(∂X ,X ,T). Then, for each α, the operators Bα satisfy

Φ
α
τ v =

∫
τ

0
T−1(τ− s)Bαv(s)ds,

for all v ∈ Lp
+(R+,∂X) and for some fixed τ≥ 0.

Step 3: ‖ · ‖Br
p
-completeness of Br

p(∂X ,X ,T)
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Boundary control system

Result 2 (Yassine, 2022)

Let X ,∂X be Banach lattices such that X is a KB-space and let T be positive. Then

Br
1(∂X ,X ,T) = L r (∂X ,X). (2)

Sketch of proof

Let B ∈B1,+(∂X ,X ,T) and τ > 0. Let v ∈ ∂X and consider the sequence of functions

vn(s) :=

{
0, if 0≤ s ≤ τ− 1

n ,

n|v |, if τ− 1
n < s ≤ τ.

Consequence

Let X ,∂X be Banach lattices with X is an AL-space and let T be positive. Then the vector space equality (2)
holds. Moreover, if there exists a positive contractive projection Π : ∂X

′′ → ∂X , ((∂X)
′′

is the bidual of ∂X ),
then

B1(∂X ,X ,T) = L(∂X ,X).
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Boundary control system

Boundary control system

Result 3 (Yassine, 2022)

Let X ,∂X be Banach lattices, let A be a densely defined resolvent positive operator such that

‖R(µ0,A)x‖ ≥ c‖x‖, x ∈ X+, (∗∗)

for some µ0 > s(A) and constant c > 0. Let B ∈ L(∂X ,X−1) be a positive control operator. Then B is a
positive zero-class Lp-admissible control operators.

Consequence

In particular, if B ∈ L r (∂X ,X−1), then B is a zero-class Lp-admissible control operator.

C. J. K. Batty and D. W. Robinson, Positive one-parameter semigroups on ordered Banach space. Acta
Appl. Math. 2 (1984) 221-296.

W. Arendt, Resolvent positive operators. Proc. London Math. Soc. 54 (1987) 321-349.

Dycon Benasque IX Partial differential equations, optimal design and numerics, Benasque August 26, 2022 23 / 39



Boundary control system

Boundary control system
Perturbation result

Desch-Schappacher perturbation, (Yassine, 2022)

Let (A,D(A)) be a densely defined resolvent positive operator such that the inverse estimate (**) holds, and
let B ∈ L(X ,X−1) be a positive operator. Then (A−1 +B)|X generates a positive C0-semigroup on X and

s((A−1 +B)|X ) = w0((A−1 +B)|X )
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Observation systems
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Observation systems

Observation systems

Consider the observed linear system

(OS)

{
ż(t) = Az(t), z(0) = x , t > 0,

y(t) = Mz(t), t > 0,

We say that the system (OS) is well-posed if the output function y(·) can be extended to a function
y ∈ Lp

loc([0,+∞),∂X) such that

‖y(·;x)‖Lp([0,α],∂X) ≤ γ‖x‖X , (x ∈ X),

for any α > 0 and some constant γ := γ(α)> 0.
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Observation systems

Observation systems

In order to overcome this obstacle we need the following class of operators C := M|D(A).

Definition

An operator C ∈ L(D(A),∂X) is called an Lp-admissible observation operator for A if for some (hence for all)
α > 0, there exists a constant γ := γ(α)> 0 such that∫

α

0
‖CT (t)x‖pdt ≤ γ

p‖x‖p, ∀x ∈ D(A). (3)

If in addition limα 7→0 γ(α) = 0, then C is called a zero-class Lp-admissible observation operator for A.
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Observation systems

Observation systems

In order to overcome this obstacle we need the following class of operators C := M|D(A).

Definition

An operator C ∈ L(D(A),∂X) is called an Lp-admissible observation operator for A if for some (hence for all)
α > 0, there exists a constant γ := γ(α)> 0 such that∫

α

0
‖CT (t)x‖pdt ≤ γ

p‖x‖p, ∀x ∈ D(A). (4)

If in addition limα 7→0 γ(α) = 0, then C is called a zero-class Lp-admissible observation operator for A.

In the following lemma we show that the admissibility of a positive observation operator is fully characterized
on the positive part of D(A).

Lemma

Let X ,∂X be Banach lattices, and let T be a positive C0-semigroup on X and C ∈ L(D(A),∂X) be a positive
operator. If for some α > 0 the estimate (3) hold for any 0≤ x ∈ D(A), then C is a positive Lp-admissible
observation operator for A.
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In view of the above lemma, the following result can be obtained by a slight modification of the proof of Lemma
2.1 in J. Voigt (1989).

Lemma

Let X ,∂X be Banach lattices such that ∂X is a real AL-space. Assume that T is a positive C0-semigroup on X
and C ∈ L(D(A),∂X) is positive. Then, C is an L1-admissible observation operator for A.

J. Voigt, On resolvent positive operators and positive C0-semigroups on AL-spaces. Semigroup Forum.
38 (1989) 263-266.
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Positive observation system

Let X ,∂X be Banach lattices. An abstract positive observation system on X ,∂X is a pair (T,Ψ) such that

(∗∗∗)


Ψτ(x + y) = Ψτx +Ψτy ,

Ψτ+t x = Ψt x , on [0, t],

Ψτ+t x = [ΨτT (t)x ](·− t), on [t,τ+ t],

for τ, t ≥ 0 and x ,y ∈ X+, where Ψ := (Ψτ)τ≥0 is a family of bounded operators from X+ to Lp
+(R+;∂X).
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Observtion

It should be noted that for each operator C ∈ L(D(A),∂X) we associate an operator CΛ, called the Yosida
extension of C with respect to A, whose domain, denoted by D(CΛ), consists of all x ∈ X for which
lim

µ 7→∞CµR(µ,A)x exists. If C is positive and A is a resolvent positive, then by the closedness of the positive

cone Y+ we have CΛ is also positive. Moreover, for an Lp-admissible positive observation operator C, we
have 0≤ T (t)x ∈ D(CΛ) and

Ψx = CΛT (.)x ≥ 0,

for a.e t ≥ 0 and all x ∈ X+.
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Observation systems

Definition

We denote by Cp(X ,T,∂X) the vector space of all Lp-admissible observation operators for A. Let τ > 0, then
Cp(X ,T,∂X) endowed with the operator norm

‖C‖Cp := sup
‖x‖≤1

‖Ψτx‖Lp([0;+∞),∂X).

for any x ∈ D(A), is a Banach space. Moreover, we shall denote by Cp,+(X ,T,∂X) the set of all positive
Lp-admissible observation operators, which is a positive cone in Cp(X ,T,∂X). On the other hand, let

Cr
p(X ,T,∂X) := {C ∈ L r (D(A),∂X) : Ψτ ∈ L r (X ,Lp([0,∞);∂X)), ∀τ≥ 0 } ,

be the space of all regular Lp-admissible observation operators.
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Definition

We denote by Cp(X ,T,∂X) the vector space of all Lp-admissible observation operators for A. Let τ > 0, then
Cp(X ,T,∂X) endowed with the operator norm

‖C‖Cp := sup
‖x‖≤1

‖Ψτx‖Lp([0;+∞),∂X).

for any x ∈ D(A), is a Banach space. Moreover, we shall denote by Cp,+(X ,T,∂X) the set of all positive
Lp-admissible observation operators, which is a positive cone in Cp(X ,T,∂X). On the other hand, let

Cr
p(X ,T,∂X) := {C ∈ L r (D(A),∂X) : Ψτ ∈ L r (X ,Lp([0,∞);∂X)), ∀τ≥ 0 } ,

be the space of all regular Lp-admissible observation operators.

Result 1, (Yassine, 2022)

Let X and Y be Banach lattices such that ∂X is order complete. Then the space Cr
p(X ,T,∂X) endowed with

norm
‖C‖Cr

p
:= sup
‖x‖≤1

x≥0

∥∥|Ψτ|x
∥∥

Lp([0;∞),∂X)
, τ≥ 0,

is an order complete Banach lattice.
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Observation systems
Sketch of the proof

Step 1: We show the existence of |C| in the canonical order of Cr
p(X ,T,∂X). Indeed, let τ≥ 0 and

C ∈ Cr
p(X ,T,Y ). Then, there is Ψτ ∈ L r (X ,Lp([0,∞);∂X)) such that

(Ψτx)(t) =

{
CT (t)x , t ∈ [0,τ),

0, t ∈ [τ,∞),

for any x ∈ D(A).

Lemma

Let X ,∂X be Banach lattices such that ∂X is order complete and let T be a positive C0-semigroup on X .
Assume that (Ψ,T) is an abstract observation system on X ,∂X with Ψτ ∈ L r (X ,Lp(R+;∂X)) for all τ≥ 0.
Then, for each τ≥ 0, there exist unique Ψ+

τ ,Ψ−
τ ∈ L+(X ,Lp(R+;∂X)) splitting Ψτ as Ψτ = Ψ+

τ −Ψ−
τ and

satisfying the properties (***).
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Observation systems
Sketch of proof

Let C ∈ Cr
p(X ,T,∂X) and let Ψτ ∈ L r (X ,Lp(R+;∂X)) be the corresponding output map. Thus, for each

τ≥ 0, the modulus of Ψτ exists (in the canonical ordering of L(X ,Lp(R+;∂X))) and is given by

|Ψτ|= Ψ
+
τ +Ψ

−
τ , Ψτ = Ψ

+
τ −Ψ

−
τ .

Step 2: We establish that Cr
p(X ,T,∂X) is order complete. Indeed, let (Cα) be a set of nonnegative elements

such that 0≤ Cα ↑≤ C holds in Cr
p(X ,T,∂X). Then, for each α, the operators Cα satisfies

Ψ
α
τ x = CαT (t)x

for all 0≤ x ∈ D(A) and for some fixed τ≥ 0.

Step 3: ‖ · ‖Cr
p
-completeness of Cr

p(X ,T,∂X).
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Observation

It is to be noted that if ∂X is a real AL-space we have Cr
1(X ,T,∂X) = L r (D(A),∂X). However, in general, we

only have the following vector subspace inclusion: Cr
p(X ,T,∂X)⊂ Cp(X ,T,∂X). Moreover, the result of the

above proposition assert that for C ∈ Cr
p(X ,T,∂X), then there exist unique C+,C− ∈ L(D(A),∂X), both are

positive Lp-admissible observation operators such that C = C+−C−. Roughly speaking,
Cr

p(X ,T,∂X) = Cp,+(X ,T,∂X)−Cp,+(X ,T,∂X)..
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Observation

It is to be noted that if ∂X is a real AL-space we have Cr
1(X ,T,∂X) = L r (D(A),∂X). However, in general, we

only have the following vector subspace inclusion: Cr
p(X ,T,∂X)⊂ Cp(X ,T,∂X). Moreover, the result of the

above proposition assert that for C ∈ Cr
p(X ,T,∂X), then there exist unique C+,C− ∈ L(D(A),∂X), both are

positive Lp-admissible observation operators such that C = C+−C−. Roughly speaking,
Cr

p(X ,T,∂X) = Cp,+(X ,T,∂X)−Cp,+(X ,T,∂X)..

Properties

Let CΛ be the Yosida extension of C with respect to A. If C ∈ Cr
p(X ,T,∂X) then the following properties hold:

(i) CΛ ∈ Cr
p(X ,T,∂X) and there exist |CΛ|,(CΛ)+,(CΛ)− ∈ Cp,+(X ,T,∂X) such as

|CΛ|= (CΛ)++(CΛ)−, CΛ = (CΛ)+−(CΛ)−, on D((CΛ)+)∩D((CΛ)−).

(ii) (CΛ)+ = (C+)Λ, (CΛ)− = (C−)Λ and |CΛ|= |C|Λ.

Proof.

The proof follows from the fact that sup is an uniformly continuous map from X ×X into ∂X .
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The following result provide a sufficient condition on admissibility of observation operators for positive semi-
groups.

Result 2, (Yassine, 2022)

Let X ,∂X be Banach lattices, and let (A,D(A)) be a densely defined resolvent positive operator such that

‖R(µ0,A)x‖ ≥ c‖x‖, x ∈ X+,

for some µ0 > s(A) and c > 0. Let C ∈ L(D(A),∂X) be a positive operator. Then C is a positive zero-class
Lp-admissible observation operator for A. Moreover, if C ∈ L r (D(A),∂X) then C is a zero-class Lp-admissible
observation operator for A.
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The following result provide a sufficient condition on admissibility of observation operators for positive semi-
groups.

Result 2, (Yassine, 2022)

Let X ,∂X be Banach lattices, and let (A,D(A)) be a densely defined resolvent positive operator such that

‖R(µ0,A)x‖ ≥ c‖x‖, x ∈ X+,

for some µ0 > s(A) and c > 0. Let C ∈ L(D(A),∂X) be a positive operator. Then C is a positive zero-class
Lp-admissible observation operator for A. Moreover, if C ∈ L r (D(A),∂X) then C is a zero-class Lp-admissible
observation operator for A.

The last result at hand, one can deduce the following perturbation result of positive semigroups.

Result 3, (Yassine, 2022)

Let A be a densely defined resolvent positive operator on a Banach lattice X . Let P : D(A)⊂ X → X be a
positive operator, and assume that

‖R(µ0,A)x‖ ≥ c‖x‖, x ∈ X+,

for some µ0 > s(A) and c > 0. Then A+P generates a positive C0-semigroup on X and
s(A+P) = w0(A+P).
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Yassine, (2022)

Let X ,∂X be Banach lattices and let assume that the following assumptions hold:

(H1) A = (Am)|kerG is a resolvent positive operator such that

‖R(µ0,A)f‖ ≥ c‖f‖, ∀X 3 f psoitive,

(H2) G is surjective.

Furthermore, let assume that the operator Γ is positive and the Dirichlet operator

Dµ :=
(

G|ker(µ−Am)

)−1
≥ 0, ∀µ > s(A).

Then, the operator

A = Am, D(A) = {x ∈ D(Am) : Gx = Γx}.

generates a positive C0-semigroup T := (T(t))t≥0 on X and ω0(A) = s(A). Moreover, we have

R(µ,A) = R(µ,A)+Dµ(I∂X −ΓDµ)
−1ΓR(µ,A)

= R(µ,A)+Dµ
∑∞

n=0(ΓDµ)
nΓR(µ,A)≥ R(µ,A)≥ 0,

for µ > s(A). Furthermore, there exists µ0 > s(A) and a constant c ′ > 0 such that

‖R(µ0,A)f‖ ≥ c ′‖f‖, ∀ f ∈ X+.
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Conclusion

(A,B,C)


ż(t) = Az(t)+Bu(t), t ≥ 0,

z(0) = x , ,

y(t) = Cz(t), t ≥ 0.

Here A generates a strongly continuous positive semigroup T on X , B ∈ L(U,X−1) is a (positive) control
operator, C ∈ L(D(A),Y ) is a (positive) observation operator, and D ∈ L(U,Y ) is the (positive) feedthrough
operator.

(1) We fully describe the structural properties of the spaces of Lp-admissible control/observation operators
in the Banach lattice setting.

(2) We give new insight into the perturbation theory, namely, positive perturbations of positive semigroups.
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Perspective

Controllability properties with positivity constraints of (A,B,C) such as feedback stabilization, optimal
control problems, the regulator problem, and H∞-control problem..
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