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What is the turnpike property?

There is a fastest route between any two points;
and if the origin and destination
are close together and far from the turnpike,
the best route may not touch the turnpike.

But if origin and destination are far enough apart,
it will always pay to get on to the turnpike
and cover distance at the best rate of travel,
even if this means adding a little mileage at either end.
(LW MCKENZIE (1986))

If all the time-derivatives are set to zero
and initial conditions and terminal conditions are
canceled,
this yields a static optimal control problem.

Turnpike results state relations between the static
optimal state/control and the dynamic optimal
states/controls.

Typically for large time intervals, close to its mid-
dle the dynamic optimal states/controls are close to
the static optimal state/control. .
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DFG

History of the DFG (from dfg.de)

• The history of the DFG extends back over almost 100 years.
• Its predecessor was the Notgemeinschaft der Deutschen Wissenschaft.
• From the very beginning, its work has focused decisively on funding and supporting excellent research.
• The Notgemeinschaft der Deutschen Wissenschaft (association for mutual assistance founded in an emergency)

was founded in 1920 ’in order to avert a complete collapse of German science and scholarship’.
Notgemeinschaft committee 1924 with Fritz Haber (front left) and Max Planck (centre)
(Copyright aus Zierold, Forschungsförderung in drei Epochen, 1968)
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Control of linear time-discrete systems
with random perturbations

Given some initial state l0 ∈ Rn, consider the evolution of state l:

lt = Alt−1 + Bxt + ξt (t = 1, . . . , T )

Here, lt (state), xt (control), ξt (random vector) ∈ Rn, A symmetric and positive definite, B regular.

• Prototype application: Optimal control of a reservoir (water, gas) with random inflow (l = filling level).

Single reservoir: A = −B = I .

• The explicit dependence of l on x and ξ is affine linear: l(x, ξ) = Px + Qξ + r.

• We assume for simplicity that Eξt = E for all t = 1, . . . , T =⇒ Elt = AElt−1 + Bxt + E.

• We fix a desired region F ⊆ Rn (closed convex) and a desired expected terminal state l(δ) ∈ F

E.g., filling level constraints lt ∈ [l∗, l∗] =: F

• As the state is random, we impose the following constraints:

P(lt ∈ F ∀t = 1, . . . , T )︸ ︷︷ ︸
φ(x)

≥ p probabilistic constraint

ElT = l(δ) expected-value constraint
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Optimal control problem

For some weight γ > 0 we define an objective (control cost + tracking term for states):

J(x) :=
T∑

t=0
∥Elt − l(δ)∥2 + γ

T∑
t=1

∥Bxt − Bx(δ)∥2,

where x(δ) is the uniquely defined ’equlibrium-control’ keeping the state as desired in expectation, hence

l(δ) = Al(δ) + Bx(δ) + E.

The optimal control problem with a probabilistic constraint is

(P (l0)) min
x

{J(x) | φ(x) ≥ p, l0 = l0, ElT = l(δ)}

Standing assumption: Existence of a ’Slater point’ xS : φ(xS) > p, ElT = l(δ).

Proposition
Problem (P (l0)) has a solution.

Proof: φ(x) = P( max
t=1,...,T

dist (lt(x, ξ), F )︸ ︷︷ ︸
continuous

≤ 0) is upper semicontinuous, hence the feasible set of (P (l0)) is closed and

nonempty (contains xS). J is coercive.
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Turnpike result for small probabilities

For small probability levels p, the probabilistic constraint is likely to be nonactive at a solution of

(P (l0)) min
x

{J(x) |φ(x) ≥ p, l0 = l0, ElT = l(δ)}}

(e.g., completely redundant for p = 0).

The free optimal control problem min J(x) with free initial state l0 and without terminal constraint ElT = l(δ)

has the optimal solution x ≡ x(δ) with associated state l ≡ l(δ).

Theorem (Turnpike for inactive probabilistic constraint)
Assume that φ(x∗) > p for a solution of (P (l0)).
Then, such solution is unique and there exists a number zγ ∈ (0, 1) that is independent of l0 and T such that

∥E(lt) − l(δ)∥2 ≤ zt
γ ∥l0 − l(δ)∥2 for all t ∈ {1, ..., T}.

One may explicitly choose: zγ = max
k∈{1,...,n}

min
z∈C:pk(z)=0

|z|2,

where - with the eigenvalues λk of the matrix A , the polynomials pk are defined as

pk(ω) = ω2 −
[

1
λk

(
1 + 1

γ

)
+ λk

]
ω + 1.
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Numerical Illustration
(small probabilities)

Desired region: F = [11, 25]
Initial level: l0 = 5, 13
Desired level: l(δ) = 16
Time horizon: T = 10
Control cost factor: γ = 5
Distribution of inflow t: ξt ∼i.i.d. N (E, 1); E = −1
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Numerical Illustration (large
probabilities up to pmax)
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Penalizing the probabilistic constraint

For high probability levels, the probabilistic constraint is likely to be binding and cannot be omitted from our problem

(P (l0)) min
x

{J(x) | φ(x) ≥ p, l0 = l0, ElT = l(δ)}.

It is advantageous to equivalently reformulate (P (l0)) as problem where the probabilistic constraint is removed and
placed as a penalty term. For λ ∈ [0, 1], consider the problem

(Q(l0, λ)) min
x

{λ J(x) − (1 − λ) ln (φ(x)) | l0 = l0,ElT = l(δ)}

Lemma
If ξ has a log-concave density (e.g., Gaussian and may others), then for each λ ∈ [0, 1], (Q(l0, λ)) is a convex
optimization problem.

Proof:

As above, we use the representation φ(x) = P( max
t=1,...,T

dist (lt(x, ξ), F ) ≤ 0).
l(x, ξ) is affine linear and F is convex and closed. Hence,

(x, ξ) 7→ max
t=1,...,T

dist (lt(x, ξ), F ) ≤ 0

is convex.
Assumption on density of ξ implies that ξ has a log-concave distribution (Prékopa’s Theorem).
Both properties yield that φ is a log-concave function (once more Prékopa).
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Penalized equivalent

Consider our original and penalized problems:

(P (l0)) min
x

{J(x) | φ(x) ≥ p, l0 = l0, ElT = l(δ)}.

(Q(l0, λ)) min
x

{λ J(x) − (1 − λ) ln (φ(x)) | l0 = l0,ElT = l(δ)}

Theorem
Let ξ have a log-concave density and assume that for all λ ∈ (0, 1], the solution x̃ of problem (Q(l0, λ)) satisfies
φ(x̃) > 0. Then, for all λ ∈ (0, 1], problem Q(l0, λ) has a unique solution and there exists a number λ∗ ∈ (0, 1] such
that the solution of Q(l0, λ∗) is equal to the solution of P (l0).

Proof by comparison of optimality conditions for convex optimization problems.

Both assumptions of the theorem are automatically fulfilled if ξ is Gaussian and int F ̸= ∅.

FAU M. Gugat fau-beamer 11/18



Candidate for turnpike solution

Consider our original and the equivalent penalized problems:

min
x

{J(x) | φ(x) ≥ p, l0 = l0, ElT = l(δ)} (P (l0)).

min
x

{λ∗ J(x) − (1 − λ∗) ln (φ(x)) | l0 = l0,ElT = l(δ)} (Q(l0, λ∗))

Given the penalized form of the problem, a turnpike candidate would result from (Q(l0, λ∗)) by leaving the initial state l0
as well as the expected terminal state ElT free:

(Q̂) min
x,l0

{λ∗ J(x) − (1 − λ∗) ln (φ(x))}

Theorem
Let Elt and El̂t be the expected states associated with the optimal solutions of the original problem (Q(l0, λ∗)) = (P (l0))
and the turnpike problem (Q̂) In addition to the assumptions of the previous Theorem (e.g., ξ Gaussian), suppose that

κ := P(l̂T − El̂T + l(δ) ∈ F | l̂t ∈ F ∀t ∈ {1, ..., T − 1}) > 0
(e.g., if ξ Gaussian). Then, one may estimate the difference between the expected states can be estimated by

T∑
t=0

∥Elt − El̂t∥2 ≤ (C(R) + logκ−1)/λ∗,

where C(R) = aR2 + bR + c (with a, b, c independent of T ), R := max
t=0,...,T

∥El̂t∥.
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What happens when T → ∞?

Previous estimate for fixed T :
T∑

t=0
∥Elt − El̂t∥2 ≤ (C(R) + logκ−1)/λ∗

Indexation by T :
T∑

t=0
∥El

(T )
t − El̂

(T )
t ∥2 ≤ (C(R(T )) + logκ−1

(T ))/λ∗
(T ) (T ∈ N)

If the right-hand side could be uniformly bouded by some K, then one would have a turnpike result

T −1
T∑

t=0
∥El

(T )
t − El̂

(T )
t ∥2 ≤ T −1K →T→∞ 0

Uniformly bounding from above C(R(T )), κ−1
(T ), 1/λ∗

(T ) ?

1. inf
T∈N

κ(T ) = inf
T∈N

P(l̂T − El̂T + l(δ) ∈ F | l̂t ∈ F ∀t ∈ {1, ..., T − 1}) > 0

2. ∥El̂
(T )
t ∥ ≤ R∗ < ∞ ∀T ∈ {0, . . . , T} ∀T ∈ N

3. 1/λ∗
(T )?
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Boundedness away from zero of 1/λ∗
(T )

Lemma
In the probabilistic constraint φ(x) ≥ p(T ) let p(T ) = ζT pmax

(T ) for some ζ ∈ (0, 1) and assume that

∥Elt∥ ≤ R̃ < ∞ ∀T ∈ {0, . . . , T} ∀T ∈ N.

Then, there exists some C∗ > 0 such that λ∗
(T ) > C∗ for all T ∈ N.
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The solution x∗
(T ) of ’pmax’-problem

max{φ(x) | l0 = l0, El
(T )
T = l(δ)}

is a Slater point of the given problem:

φ(x∗
(T )) = pmax > p(T ).

Numerical computations were based on the
spheric-radial decomposition of Gaussian (more gener-
ally: elliptical) random distributions in order to compute
values and gradients (w.r.t. control) of the probability
function φ. See results by Wim v. Ackooij.
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Numerical Illustration
(large probabilities)
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Open questions

We have established a turnpike result under the assumptions

1. inf
T∈N

P(l̂T − El̂T + l(δ) ∈ F | l̂t ∈ F ∀t ∈ {1, ..., T − 1}) > 0

2. ∥El̂
(T )
t ∥, ∥Elt∥ ≤ R̂ < ∞ ∀T ∈ {0, . . . , T} ∀T ∈ N

While the meaning of 2. is clear, 1. is purely technical. How to guarantee both conditions in terms of the problem data?

1. can be probably guaranteed by a uniformity condition on the variances of ξt, e.g.,
V ar(ξt) ≤ c for all t ∈ N.

2. seems intuitively obvious, but it is not. Conditions found so far are unrealistic (e.g., independence of random states).
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Conclusions

• The uncertainty of the data is relevant to obtain controls that work sufficiently well in the set of data that is expected.
• If information on the probability distribution of the data is available, it should be used in an optimal control model.
• We include the probability that state constraints are satisfied as a part of the objective function.

In this way, the optimal controls are robust in the sense that the pressure bounds are satisfied with a high probability.
• An approach to the numerical solution that will be presented by Michael Schuster uses a kernel density estimator to

obtain a differentiable approximation of the objective functional, similar as in [Sch+21].
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