Conservative numerical schemes for generalized models in chromatography

Pep Mulet

Departament of Mathematics University of Valencia

Joint work with R. Donat (UV) and M.C. Martí(UV)

IX Workshop on PDE, optimal design and numerics, Benasque, 2022

Contents

Introduction

- 2 Mathematical structure of EDM
- 3 Numerical schemes
- 4 Numerical experiments

5 Conclusions

Outline

Introduction

- 2 Mathematical structure of EDM
- 3 Numerical schemes
- 4 Numerical experiments

5 Conclusions

6 Bibliography

Introduction

Liquid chromatography (from chemicool Chem. Dict.)

- Liquid chromatography uses a column holding a porous solid (**stationary phase**) to separate each substance in a solution by their different interactions with the stationary phase.
- The mixture to be separated is loaded onto the top of the column followed by more solvent (**displacer**).
- If things are done correctly (therefore the importance of simulations), each substance can be collected at the bottom of the column.

- $N \equiv$ number of substances in solution (N = 3 in this example)
- Follow notation in [Guiochon, Shirazi, and Katti., 2006]

Pep Mulet (UV)

Liquid chromatography I

- Concentrations $c_*(x,t)$ functions of position in column x and time t
 - $c_i \equiv \text{concentration of substance } i \text{ in solvent}$

 $c_{s,i} \equiv$ concentration of substance *i* in stationary phase.

• $\varepsilon \equiv$ porosity (ratio of void space that can be filled by solution)

 $\Rightarrow \varepsilon c_i + (1 - \varepsilon)c_{s,i} \equiv \text{ concentration of substance } i$

• $u \equiv$ velocity of mobile phase (solution)

 $\Rightarrow u \varepsilon c_i \equiv$ convective flux substance *i*

• Radial effects in the column are "swept" into a diffusion term, with coefficient *D_a* (axial dispersion coefficient)

$$\Rightarrow D_a \varepsilon \frac{\partial c_i}{\partial x} \equiv \text{ diffusive flux substance } i$$

Liquid chromatography II

• Continuity equations read, for i = 1, ..., N:

$$\frac{\partial(\varepsilon c_i + (1 - \varepsilon)c_{s,i})}{\partial t} + \frac{\partial(u\varepsilon c_i)}{\partial x} = \frac{\partial^2(D_a\varepsilon c_i)}{\partial x^2}$$
$$\Leftrightarrow \frac{\partial c_i}{\partial t} + \frac{1 - \varepsilon}{\varepsilon}\frac{c_{s,i}}{\partial t} + u\frac{\partial c_i}{\partial x} = D_a\frac{\partial^2 c_i}{\partial x^2}.$$

In kinetic non-equilibrium models there are ODE

$$\frac{\partial c_{s,i}}{\partial t} = g_i(c_1, \dots, c_N, c_{s,1}, \dots, c_{s,N}), \quad i = 1, \dots, N,$$

with stationary solutions given by $c_{s,i} = q_i(c_1, \ldots, c_N)$, where q_i are some (known) functions named **adsorption isotherms**.

Introduction

Equilibrium Dispersive Model

• In Equilibrium Dispersive Model (EDM), assume instant equilibrium, so that $c_{s,i} = q_i(c_1, \ldots, c_N)$ holds at any time \Rightarrow

$$\frac{\partial}{\partial t} \Big(c_i + \frac{1 - \varepsilon}{\varepsilon} q_i(c_1, \dots, c_N) \Big) + u \frac{\partial c_i}{\partial x} = D_a \frac{\partial^2 c_i}{\partial x^2}$$
 EDM

• There are initial conditions $c_i(x, 0)$ (usually = 0, corresponding to an empty column) and boundary conditions

$$(uc_i - D_a \frac{\partial c_i}{\partial x})(0, t) = uc_i^{inj}(t),$$
 left (up) Dankwerts BC
 $D_a \frac{\partial c_i}{\partial x}(1, t) = 0$ right (down) Neumann BC

for given **injection functions** $c_i^{inj}(t)$.

Ideal chromatography

• In **ideal** chromatography, $D_a = 0$, so that EDM model

$$\frac{\partial}{\partial t} \left(c_i + \frac{1 - \varepsilon}{\varepsilon} q_i(c_1, \dots, c_N) \right) + u \frac{\partial c_i}{\partial x} = 0.$$

$$c_i(x, 0) = c_i^0(x)$$

$$c_i(0, t) = c_i^{inj}(t)$$

can be regarded as a system of conservation laws with conserved variables c_i if the roles of x and t are reversed, so that $c_i(0,t) = c_i^{inj}(t)$ is the "initial condition" and $c_i(x,0) = c_i^0(x)$ is the "boundary condition".

This is the usual chromatography model in many textbooks

Non-ideal chromatography

 For D_a ≠ 0, one should regard c_i as primitive variables and w_i = c_i + ^{1-ε}/_εq_i(c₁,...,c_N) as conserved variables and hope this mapping be a change of variables

$$W: [0, \infty)^N \to [0, \infty)^N,$$

$$W_i(\boldsymbol{c}) = W(\boldsymbol{c})_i = c_i + \frac{1 - \varepsilon}{\varepsilon} q_i(\boldsymbol{c}), \boldsymbol{c} = (c_1, \dots, c_N)$$

• Langmuir isotherm

$$q_i(c_1,\ldots,c_N) = \frac{a_i c_i}{1 + \sum_{j=1}^N b_j c_j}$$

for $a_i, b_i > 0$ are the standard for multicomponent liquid chromatography.

• Can (and will) assume $b_1 = \cdots = b_N = 1$

Non-conservative formulation

• For the Langmuir isotherm in [Javeed, Qamar, Seidel-Morgenstern, and Warnecke., 2011] a non-conservative scheme was proposed for the EDM: provided W'(c) is invertible (as we will see is the case) for classical solutions we have the following equivalences

$$\begin{aligned} \frac{\partial \boldsymbol{W}(\boldsymbol{c})}{\partial t} + u \frac{\partial \boldsymbol{c}}{\partial x} &= D_a \frac{\partial^2 \boldsymbol{c}}{\partial x^2} \Leftrightarrow \\ \boldsymbol{W}'(\boldsymbol{c}) \frac{\partial \boldsymbol{c}}{\partial t} + u \frac{\partial \boldsymbol{c}}{\partial x} &= D_a \frac{\partial^2 \boldsymbol{c}}{\partial x^2} \Leftrightarrow \\ \frac{\partial \boldsymbol{c}}{\partial t} + u \boldsymbol{W}'(\boldsymbol{c})^{-1} \frac{\partial \boldsymbol{c}}{\partial x} &= D_a \boldsymbol{W}'(\boldsymbol{c})^{-1} \frac{\partial^2 \boldsymbol{c}}{\partial x^2} \end{aligned}$$

• Numerical schemes applied to this **primitive variables** formulation might lead to lack of conservation and wrong shock speeds.

Conservative formulation

• For Langmuir isotherms, we prove in [Donat, Guerrero, and Mulet, 2018] that W is a change of variables with solution of EDM given by c(x,t) = C(w(x,t)), $C = W^{-1}$, and w(x,t) solving

$$\frac{\partial \boldsymbol{w}}{\partial t} + u \frac{\partial \boldsymbol{C}(\boldsymbol{w})}{\partial x} = D_a \frac{\partial^2 \boldsymbol{C}(\boldsymbol{w})}{\partial x^2} = D_a \frac{\partial}{\partial x} \left(\boldsymbol{C}'(\boldsymbol{w}) \frac{\partial \boldsymbol{w}}{\partial x} \right),$$

where C'(w) has distinct eigenvalues $\geq \lambda_{\min} > 0$, so that linearizations of these equations are well-posed.

• Although there is no closed-form for *C*, Implicit-Explicit conservative schemes were proposed.

Objective

• Generalize results in [Donat, Guerrero, and Mulet, 2018] to isotherms

$$q_i(c_1, \dots, c_N) = \frac{a_i c_i}{\varphi(\sum_{j=1}^N c_j)}, \quad a_i > 0$$

for functions φ satisfying:

 $\begin{array}{l} \bullet \ \varphi \colon [0,\infty) \to [1,\infty) \text{ continuous and increasing bijection} \\ \bullet \ \varphi'(c) > 0 \text{ continuous in } (0,\infty) \\ \bullet \ \left(\frac{c}{\varphi(c)}\right)' > 0 \,\forall c \in (0,\infty) \end{array}$

• $\varphi(c) = 1 + c$ for Langmuir isotherm satisfies these requirements.

• Tóth isotherms $\varphi(c) = (1 + c^{\nu})^{\frac{1}{\nu}}$ for heterogeneity parameter $\nu \in (0, 1]$ also satisfy these requirements (Langmuir isotherm for $\nu = 1$).

Outline

Introduction

- 3 Numerical schemes
- 4 Numerical experiments

5 Conclusions

6 Bibliography

Notation

Assume
$$0 < a_1 < \cdots < a_N$$
 and denote $\eta_i = \frac{(1-\varepsilon)a_i}{\varepsilon}$ so that
 $\mathbf{W} \colon [0,\infty)^N \to [0,\infty)^N$,
 $W_i(c_1,\ldots,c_N) = c_i v_i(\mathbf{c}), \quad v_i(\mathbf{c}) = 1 + \frac{\eta_i}{\varphi(\sum_{j=1}^N c_j)}$
 $1 < v_1(\mathbf{c}) < \cdots < v_N(\mathbf{c}) < 1 + \eta_N$

• Aim to prove that W is a change of variables

Jacobians W' l

Theorem 2.1

For $c_i > 0, i = 1, ..., N$, W'(c) is diagonalizable with N distinct eigenvalues $\lambda_i(c), i = 1, ..., N$, satisfying this **interlacing property**

$$1 < \lambda_1(\boldsymbol{c}) < v_1(\boldsymbol{c}) < \lambda_2(\boldsymbol{c}) < v_2(\boldsymbol{c}) < \dots < \lambda_N(\boldsymbol{c}) < v_N(\boldsymbol{c}) < 1 + \eta_N$$

The (right) eigenvector $R^i(c)$ corresponding to $\lambda_i(c)$ is

$$R_j^i(\boldsymbol{c}) = rac{c_j}{v_j(\boldsymbol{c}) - \lambda_i(\boldsymbol{c})}, \quad j = 1, \dots, N.$$

Pep Mulet (I	JV)	
--------------	-----	--

Jacobians W' II

•
$$W_i(\mathbf{c}) = \frac{\mathbf{c}_i}{\mathbf{c}_i} \left(1 + \frac{\eta_i}{\varphi(\sum_k c_k)} \right) \Rightarrow$$

$$\boldsymbol{W}'(\boldsymbol{c})_{ij} = \frac{\partial W_i(\boldsymbol{c})}{\partial c_j} = \delta_{i,j} \underbrace{\left(1 + \frac{\eta_i}{\varphi(\sum_k c_k)}\right)}^{v_i} - c_i \eta_j \frac{\frac{\partial v_i}{\partial c_j}}{\varphi(\sum_k c_k)^2} \Rightarrow \boldsymbol{W}'(\boldsymbol{c}) = D + \gamma \boldsymbol{c} \boldsymbol{\eta}^T, \quad D = \operatorname{diag}(v_1, \dots, v_N), \gamma = -\frac{\varphi'(\sum_k c_k)}{\varphi(\sum_k c_k)^2}$$

• [Anderson, 1996, Donat and Mulet., 2010] N eigenvalues λ of "diagonal" + "rank one matrix" given by N roots of secular equation

$$0 = Q(\lambda) = 1 + \sum_{i=1}^{N} \frac{\gamma \eta_i c_i}{v_i - \lambda}$$

 $(\lim_{\lambda \to v_i \pm} Q(\lambda) = \pm \infty$, coefficients $\gamma \eta_i c_i < 0$, $\lim_{\lambda \to \pm \infty} Q(\lambda) = 1$)

Mathematical structure of EDM

Jacobians W' III

• Since roots of *Q* are located in known intervals, Newton+bisection can be used for their efficient computation.

Invertibility of W I

Theorem 2.2

$$\begin{aligned} \boldsymbol{W} \colon [0,\infty)^N &\to [0,\infty)^N \text{ (or } \boldsymbol{W} \colon (0,\infty)^N \to (0,\infty)^N \text{),} \\ W_i(c_1,\ldots,c_N) &= c_i v_i(\boldsymbol{c}), \quad v_i(\boldsymbol{c}) = 1 + \frac{\eta_i}{\varphi(\sum_{j=1}^N c_j)}, \end{aligned}$$

is a bijection with inverse given by

$$\boldsymbol{C}_i(\boldsymbol{w}) = \frac{w_i}{1 + \frac{\eta_i}{p(\boldsymbol{w})}},$$

where $p = p(w) \ge 1$ is the unique solution of the (scalar) equation

$$0 = S(p) = \sum_{i=1}^{N} \frac{w_i}{p + \eta_i} - \frac{\varphi^{-1}(p)}{p}$$

Mathematical structure of EDM

Invertibility of W II

• For $\boldsymbol{w} = (w_1, \dots, w_N), w_i \ge 0$, how solving for $\boldsymbol{c} = (c_1, \dots, c_N), c_i \ge 0$

$$w_{i} = \boldsymbol{W}_{i}(\boldsymbol{c}) \Leftrightarrow w_{i} = c_{i} \left(1 + \frac{\eta_{i}}{\varphi(\sum_{j=1}^{N} c_{j})} \right) \Leftrightarrow \frac{w_{i}}{1 + \frac{\eta_{i}}{\varphi(\sum_{j=1}^{N} c_{j})}} = c_{i} \Rightarrow$$
$$\sum_{j=1}^{N} \frac{w_{i}}{1 + \frac{\eta_{i}}{\varphi(\sum_{j=1}^{N} c_{j})}} = \sum_{j=1}^{N} c_{i}$$

• This leads to $p = \varphi(\sum_{j=1}^{N} c_j)$ satisfying

$$0 = \sum_{i=1}^{N} \frac{w_i}{p + \eta_i} - \frac{\varphi^{-1}(p)}{p} =: S(p).$$

Conversely, it can be seen that

$$oldsymbol{C}_i(oldsymbol{w}) = rac{w_i}{1 + rac{\eta_i}{p}}, S(oldsymbol{p}) = 0 \Rightarrow oldsymbol{C}(oldsymbol{W}(oldsymbol{c})) = oldsymbol{c}, oldsymbol{W}(oldsymbol{C}(oldsymbol{w})) = oldsymbol{w}.$$

Pep Mulet (UV)

Invertibility of W III

• Can assume $w \neq 0$ for the existence of a unique solution of

$$0 = \sum_{i=1}^{N} \frac{w_i}{p + \eta_i} - \frac{\varphi^{-1}(p)}{p} = S(p).$$

• S(p) strictly decreasing, since $\frac{w_i}{n+n_i}$ is so and

$$\frac{\varphi^{-1}(p)}{p} = \frac{\varphi^{-1}(p)}{\varphi(\varphi^{-1}(p))} = \left(\frac{c}{\varphi(c)} \circ \varphi^{-1}\right)(p)$$

is increasing (crucial $\varphi^{-1}, c/\varphi(c)$ increasing) • S changes sign between 1 and $\overline{p}(w) = \varphi(\sum_{j=1}^{N} w_j) > \varphi(0) = 1$,

$$\Rightarrow \exists ! p \in (1, \overline{p}(\boldsymbol{w})) / S(p) = 0$$

(p efficiently found with bisection+Newton).

Invertibility of W IV

Theorem 2.3

 $C = W^{-1}: (0,\infty)^N \to (0,\infty)^N$ is continuously differentiable, C'(w) is diagonalizable with N distinct eigenvalues

$$\frac{1}{\lambda_i(\boldsymbol{C}(\boldsymbol{w}))} \in (\frac{1}{1+\eta_N}, 1), i = 1, \dots, N$$

and same eigenvectors as W'(C(w)).

- $\boldsymbol{W} \colon (0,\infty)^N \to (0,\infty)^N$ bijection, det $\boldsymbol{W}'(\boldsymbol{c}) \neq 0 \; \forall \boldsymbol{c} \in (0,\infty)^N$
- By Inv. Fun. T., $C = W^{-1}$ is differentiable
- The chain rule yields $C'(w) = (W'(C(w))^{-1})$, so that eigenvalues of C'(w) are $1/\lambda_i(C(w))$, i = 1, ..., N.

Well-posedness I

From Theorem 2.3 EDM can be written as system of N equations

$$\frac{\partial \boldsymbol{w}}{\partial t} + \frac{\partial \boldsymbol{f}(\boldsymbol{w})}{\partial x} = D_a \frac{\partial}{\partial x} \left[\boldsymbol{C}'(\boldsymbol{w}) \frac{\partial \boldsymbol{w}}{\partial x} \right], \quad \boldsymbol{f}(\boldsymbol{w}) = u \boldsymbol{C}(\boldsymbol{w}).$$

- For $D_a = 0$, it is a strictly hyperbolic system of conservation laws, since eigenvalues of $uC'(w), w \in (0, \infty)^N$, are real and distinct.
- For $D_a \neq 0$ the system is parabolic, since the eigenvalues of $D_a C'(w), w \in (0, \infty)^N$, are real and bounded below by positive numbers, so that linearized problems are well-posed.

Outline

Introduction

- 2 Mathematical structure of EDM
- 3 Numerical schemes
 - 4 Numerical experiments

5 Conclusions

6 Bibliography

Method Of Lines: $w_t + \gamma w_x = \delta w_{xx}, x \in (0, 1), \gamma, \delta > 0$

• For each
$$x_j = (j - \frac{1}{2})\Delta x$$
, $j = 1, \dots, L$, $\Delta x = \frac{1}{L}$ of the grid

we consider Finite Difference approximations

$$w_x(x_j,t) \approx \frac{w(x_j,t) - w(x_{j-1},t)}{\Delta x} \text{ (1st order, upwind)}$$
$$w_{xx}(x_j,t) \approx \frac{w(x_{j+1},t) - 2w(x_j,t) + w(x_{j-1},t)}{\Delta x^2} \quad \text{ (2nd order)}$$

Method Of Lines: $w_t + \gamma w_x = \delta w_{xx}, x \in (0, 1), \gamma, \delta > 0$

• For each
$$x_j = (j - \frac{1}{2})\Delta x$$
, $j = 1, \dots, L$, $\Delta x = \frac{1}{L}$ of the grid

we consider Finite Difference approximations

$$w_x(x_j,t) \approx \frac{w(x_j,t) - w(x_{j-1},t)}{\Delta x} \text{ (1st order, upwind)}$$
$$w_{xx}(x_j,t) \approx \frac{w(x_{j+1},t) - 2w(x_j,t) + w(x_{j-1},t)}{\Delta x^2} \quad \text{ (2nd order)}$$

• Substitute into $w_t(x_j,t) = (-\gamma w_x + \delta w_{xx})(x_j,t) \Rightarrow$

$$w_t(x_j, t) \approx -\gamma \frac{w(x_j, t) - w(x_{j-1}, t)}{\Delta x} + \delta \frac{w(x_{j+1}, t) - 2w(x_j, t) + w(x_{j-1}, t)}{\Delta x^2}$$

Method Of Lines: $w_t + \gamma w_x = \delta w_{xx}, x \in (0, 1), \gamma, \delta > 0$

• For each
$$x_j = (j - \frac{1}{2})\Delta x$$
, $j = 1, \dots, L$, $\Delta x = \frac{1}{L}$ of the grid

we consider Finite Difference approximations

$$w_x(x_j,t) \approx \frac{w(x_j,t) - w(x_{j-1},t)}{\Delta x} \text{ (1st order, upwind)}$$
$$w_{xx}(x_j,t) \approx \frac{w(x_{j+1},t) - 2w(x_j,t) + w(x_{j-1},t)}{\Delta x^2} \quad \text{ (2nd order)}$$

• Substitute into $w_t(x_j,t) = (-\gamma w_x + \delta w_{xx})(x_j,t) \Rightarrow$

$$w_t(x_j, t) \approx -\gamma \frac{w(x_j, t) - w(x_{j-1}, t)}{\Delta x} + \delta \frac{w(x_{j+1}, t) - 2w(x_j, t) + w(x_{j-1}, t)}{\Delta x^2}$$

Get spatial semidiscretization for w_j(t) ≈ w(x_j, t), j = 1,...,L
 (Periodic B.C. ⇒ w₀ = w_L, w_{L+1} = w₁)

$$w_{j}'(t) = -\gamma \frac{w_{j}(t) - w_{j-1}(t)}{\Delta x} + \delta \frac{w_{j+1}(t) - 2w_{j}(t) + w_{j-1}(t)}{\Delta x^{2}}$$

Method Of Lines: $w_t + \gamma w_x = \delta w_{xx}, x \in (0, 1)$

Linear PDE and linear discretization ⇒ linear ODE.
 In vector form:

$$\begin{bmatrix} w_1'(t) \\ \vdots \\ w_L'(t) \end{bmatrix} = \frac{\gamma}{\Delta x} \underbrace{ \begin{bmatrix} -1 & 0 & \cdots & 1 \\ 1 & -1 & \cdot & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 1 & -1 \end{bmatrix} }_{A_{\text{conv}}} \begin{bmatrix} w_1(t) \\ \vdots \\ w_L(t) \end{bmatrix} \\ + \frac{\delta}{\Delta x^2} \underbrace{ \begin{bmatrix} -2 & 1 & 0 & \cdots & 1 \\ 1 & -2 & 1 & \cdot & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 1 & \cdots & 0 & 1 & -2 \end{bmatrix} }_{A_{\text{ciff}}} \begin{bmatrix} w_1(t) \\ \vdots \\ w_L(t) \end{bmatrix} \\ \Rightarrow \\ w'(t) = Aw(t), \quad A = \frac{\gamma}{\Delta x} A_{\text{conv}} + \frac{\delta}{\Delta x^2} A_{\text{diff}} \in \mathbb{R}^{L \times L}, \quad w(t) \in \mathbb{R}^L$$

Stability I

• Fully discrete numerical method for $w_j^n \approx w_j(t_n) \approx w(x_j, t_n)$ by applying Euler's method to w' = Aw ($\Delta t = t_{n+1} - t_n$ for sake of argument):

$$w^{n+1} = w^n + \Delta t \, A w^n = (I + \Delta t \, A) w^n \Rightarrow$$
$$w^n = (I + \Delta t A)^n w^0, \quad w^0_j = w(x_j, 0)$$

• Powers of $I + \Delta t A$, written in terms of spectral decomposition of A,

$$w^{0} = \sum_{p=1}^{L} z^{p}, \quad Az^{p} = \lambda_{p} z^{p} \Rightarrow (I + \Delta tA)^{n} w^{0} = \sum_{p=1}^{L} (1 + \Delta t\lambda_{p})^{n} z^{p}$$

do not blow up (solutions do not) if $|1 + \Delta t \lambda_p| \le 1$, $\forall p$ (stability)

Stability II

• von Neumann analysis: A circulant matrix \Rightarrow eigenvectors $z^p, p = 1, \dots, L$, given by discrete harmonics $z^p_i = e^{\theta_p j i}, \theta_p = \frac{2p\pi}{L} \Delta x$

To attain fixed T = M∆t > 0 for ∆x ↓ 0, many (M → ∞) tiny time steps ∆t (no need for accuracy).

Stability III

• Upwinding crucial for stability: If $\delta = 0$ and we had chosen the 2nd order central approximation $w_x(x_j, t) \approx \frac{w(x_{j+1}, t) - w(x_{j-1}, t)}{2\Delta x}$ then Euler's method would yield

$$\lambda_p = -\gamma \frac{e^{\theta_p i} - e^{-\theta_p i}}{2\Delta x} = -\gamma \frac{\sin(\theta_p)}{\Delta x} i \Rightarrow |1 + \lambda_p \Delta t| > 1 \,\forall \Delta t > 0.$$

• On the other hand, no restriction on Δt for stability of **Implicit** Euler's method $w^{n+1} = w^n + \Delta t A w^{n+1}$

$$w^{0} = \sum_{p=1}^{L} z^{p}, \quad Az^{p} = \lambda_{p} z^{p} \Rightarrow$$
$$w^{n} = \sum_{p=1}^{L} (1 - \Delta t \lambda_{p})^{-n} z^{p}, |1 - \Delta t \lambda_{p}|^{-1} < 1 \,\forall \Delta t > 0$$

but anyway need $\Delta t \propto \Delta x$ for accuracy

Pep Mulet (UV)

General spatial semidiscretization

Spatial discretization of

$$\frac{\partial \boldsymbol{w}}{\partial t} + \frac{\partial \boldsymbol{f}(\boldsymbol{w})}{\partial x} = D_a \frac{\partial^2}{\partial x^2} \boldsymbol{C}(\boldsymbol{w}) + \mathsf{B.C.}$$

denoted by (remember $x_{j+1} - x_j = \Delta x \, \forall j$)

$$\begin{split} \boldsymbol{w}' &= \mathcal{L}(\boldsymbol{w}) + \mathcal{D}(\boldsymbol{w}), \quad \boldsymbol{w}_j(t) \approx \boldsymbol{w}(x_j, t) \in \mathbb{R}^N, j = 1, \dots, L\\ \mathcal{D}(\boldsymbol{w})_j &= D_a \frac{\boldsymbol{C}(\boldsymbol{w}_{j+1}) - 2\boldsymbol{C}(\boldsymbol{w}_j) + \boldsymbol{C}(\boldsymbol{w}_{j-1})}{\Delta x^2}\\ (\mathcal{L}(\boldsymbol{w}) &= -\frac{\gamma}{\Delta x} A_{\mathsf{conv}} \, \boldsymbol{w}, \mathcal{D}(\boldsymbol{w}) = \frac{\delta}{\Delta x^2} A_{\mathsf{diff}} \, \boldsymbol{w} \text{ in example}) \end{split}$$

 For convergence to weak solutions, the convective term should be obtained by differences of numerical fluxes (Lax-Wendroff Th.),

$$\mathcal{L}(\boldsymbol{w})_{j} = -\frac{\widehat{\boldsymbol{f}}(\boldsymbol{w})_{j+\frac{1}{2}} - \widehat{\boldsymbol{f}}(\boldsymbol{w})_{j-\frac{1}{2}}}{\Delta x}, \widehat{\boldsymbol{f}}(\boldsymbol{w})_{j+\frac{1}{2}} = \widehat{\boldsymbol{f}}(\underbrace{\boldsymbol{w}_{j-r+1}, \dots, \boldsymbol{w}_{j+r}}_{2r}), r \ge 1$$

Convective terms and upwinding I

- In a finite volume setting, numerical fluxes are usually obtained by solving Riemann problems.
- Although solving Riemann problems for chromatography for arbitrary N can be challenging, the numerical flux for Godunov's method is

$$\widehat{\boldsymbol{f}}(\boldsymbol{w}_j, \boldsymbol{w}_{j+1}) = \boldsymbol{f}(\boldsymbol{R}(0)),$$

where $\boldsymbol{w}(x,t) = \boldsymbol{R}(x/t)$ is the solution of the **Riemann problem** $\frac{\partial \boldsymbol{w}}{\partial t} + \frac{\partial \boldsymbol{f}(\boldsymbol{w})}{\partial x} = 0 \quad \boldsymbol{w}(x,0) = \begin{cases} \boldsymbol{w}_j & x > 0\\ \boldsymbol{w}_{j+1} & x < 0 \end{cases}$

• Since the wave speeds are dictated by the eigenvalues (> 0) of f'(w), it follows that all the waves move right, so

$$\boldsymbol{w}(0,t) = \boldsymbol{R}(0) = \boldsymbol{w}_j, \forall t > 0,$$

and Godunov's method is given by

$$\widehat{f}(oldsymbol{w}_j,oldsymbol{w}_{j+1})=oldsymbol{f}(oldsymbol{w}_j)$$
 (upwind)

Convective terms and upwinding II

- Nice properties for Godunov's method, but only 1st order accurate.
- There are higher-order Godunov-type methods, as MUSCL schemes ([van Leer, 1979])

$$\begin{split} \widehat{f}^{\text{MUSCL}}(w_{j-1}, w_j, w_{j+1}, w_{j+2}) &= \widehat{f}^{\text{Godunov}}(w_{j+\frac{1}{2}}^-, w_{j+\frac{1}{2}}^+) \\ w_{j+\frac{1}{2}}^- &= w_j + \frac{1}{2} \text{minmod}(w_j - w_{j-1}, w_{j+1} - w_j), \\ w_{j+\frac{1}{2}}^+ &= w_{j+1} - \frac{1}{2} \text{minmod}(w_{j+1} - w_j, w_{j+2} - w_{j+1}) \\ \text{minmod}(\mathbf{a}, \mathbf{b})_j &= \frac{1}{2} (\text{sign}(a_j) + \text{sign}(b_j)) \min(|a_j|, |b_j|) \end{split}$$

• For scalar equations, they have the Total Variation Diminishing (**TVD**) property, which ensures stability, but are at most 2nd order accurate and 1st order accurate at smooth extrema.

Convective terms and upwinding III

- Instead of this, we aim at using finite difference schemes, following [Shu and Osher, 1988]
- Consider the example $w_t + \gamma w_x \delta w_{xx} = 0$, $f(w) = \gamma w, \gamma > 0$ $w_j(t) = w(x_j, t) \Rightarrow$

$$\begin{cases} w'_j = w_t(x_j, t), \\ \mathcal{L}(v)_j = -\frac{\gamma w_j - \gamma w_{j-1}}{\Delta x} = -\gamma w_x(x_j, t) + \mathcal{O}(\Delta x) \\ \mathcal{D}(v)_j = \delta \frac{w_{j+1}(t) - 2w_j(t) + w_{j-1}(t)}{\Delta x^2} = \delta \frac{\partial^2}{\partial x^2} w(x_j, t) + \mathcal{O}(\Delta x)^2 \end{cases}$$

• The local truncation error of the semidiscrete scheme is

$$\boldsymbol{w}' - \mathcal{L}(\boldsymbol{w}) - \mathcal{D}(\boldsymbol{w}) = \mathcal{O}(\Delta x) + \mathcal{O}(\Delta x^2) = \mathcal{O}(\Delta x)$$

so that the scheme is 1st order (and will be so when getting fully discrete scheme with ODE solvers)

Pep Mulet (UV)

Convective terms and upwinding IV

- For a second order approximation of the convective term, need also upwinding, which does not necessarily imply that all the information should be taken from the left, for γ > 0.
- The challenge is getting an approximation of $\gamma w_x(x_j, t)$:
 - with accuracy of order ≥ 2 .
 - involving more points to the left of x_j than to the right.
 - being a finite difference of two numerical fluxes.

$$\begin{split} \widehat{f}(w_{j-1}, w_j, w_{j+1}, w_{j+2}) &= \gamma(-\frac{1}{6}w_{j-1} + \frac{5}{6}w_j + \frac{1}{3}w_{j+1}) \Rightarrow \\ w_j &= w(x_j, t), w(\cdot, t) \in \mathcal{C}^4 \Rightarrow \\ \frac{\widehat{f}(w_{j-1}, w_j, w_{j+1}, w_{j+2}) - \widehat{f}(w_{j-2}, w_{j-1}, w_j, w_{j+1})}{\Delta x} \\ &= \gamma \frac{\frac{1}{6}w_{j-2} - w_{j-1} + \frac{1}{2}w_j + \frac{1}{3}w_{j+1}}{\Delta x} = \gamma w_x(x_j, t) + \mathcal{O}(\Delta x^3) \end{split}$$

Convective terms and upwinding V

• How do we get these formulae? If for a sufficiently smooth f

$$\frac{1}{\Delta x} \int_{x_l - \frac{\Delta x}{2}}^{x_l + \frac{\Delta x}{2}} p_+(x) dx = f(x_l) = f_l, l = k, \dots, k+n$$
$$\frac{1}{\Delta x} \int_{x_l - \frac{\Delta x}{2}}^{x_l + \frac{\Delta x}{2}} p_-(x) dx = f(x_l), l = k-1, \dots, k+n-1$$

where p_{\pm} are polynomial **reconstructions** of degree $\leq n$, then $\frac{p_{\pm}(x \pm \frac{\Delta x}{2}) - p_{-}(x \pm \frac{\Delta x}{2})}{\Delta x} = f'(x) + \mathcal{O}(\Delta x^{n+1})$

• The previous formula is obtained with $n = 2, k = j - 1, f_l = \gamma w_l$

$$\widehat{f}(w_{j-1}, w_j, w_{j+1}, w_{j+2}) = p_+(x_j + \frac{\Delta x}{2}) = -\frac{1}{6}f_{j-1} + \frac{5}{6}f_j + \frac{1}{3}f_{j+1}$$

Essentially Non-Oscillatory Schemes

- Essentially Non-Oscillatory property [Harten, Engquist, Osher, and Chakravarthy, 1987]: let TV increase at the level of the order of the method to get beyond 2nd order.
- As example, consider the ENO3 reconstructions (n = 2, three points in substencil SC_{*}, h = Δx, x₀ = 0, p₊ ≡ p_{*}³) which selects the substencil from the whole 5 points stencil for which the data is smoothest (based on divided differences) in order to avoid discontinuities ⇒ 3rd order schemes with ENO property.

Essentially Non-Oscillatory Schemes

- Essentially Non-Oscillatory property [Harten, Engquist, Osher, and Chakravarthy, 1987]: let TV increase at the level of the order of the method to get beyond 2nd order.
- As example, consider the ENO3 reconstructions (n = 2, three points in substencil SC_{*}, h = Δx, x₀ = 0, p₊ ≡ p_{*}³) which selects the substencil from the whole 5 points stencil for which the data is smoothest (based on divided differences) in order to avoid discontinuities ⇒ 3rd order schemes with ENO property.

Essentially Non-Oscillatory Schemes

- Essentially Non-Oscillatory property [Harten, Engquist, Osher, and Chakravarthy, 1987]: let TV increase at the level of the order of the method to get beyond 2nd order.
- As example, consider the ENO3 reconstructions (n = 2, three points in substencil SC_{*}, h = Δx, x₀ = 0, p₊ ≡ p_{*}³) which selects the substencil from the whole 5 points stencil for which the data is smoothest (based on divided differences) in order to avoid discontinuities ⇒ 3rd order schemes with ENO property.

• Can get ENO if enough points can be fitted between discontinuities.

Weighted Essentially Non-Oscillatory Schemes

- If we had used the entire five-points stencil, then the scheme would be 5th order accurate, but it would not be ENO.
- In [Liu, Osher, and Chan, 1994, Jiang and Shu, 1996] Weighted Essentially Non-Oscillatory schemes are proposed to transition smoothly from the 5th order reconstruction in smooth zones to the 3rd order reconstruction in nonsmooth zones.
- This is achieved by weighting the reconstructions p_0^3, p_1^3, p_2^3

$$\begin{split} \widehat{f}_{j+\frac{1}{2}} &= \omega_0 p_0^3(x_{j+\frac{1}{2}}) + \omega_1 p_1^3(x_{j+\frac{1}{2}}) + \omega_2 p_2^3(x_{j+\frac{1}{2}}) \text{ (WENO5)} \\ \omega_0 &= \omega_0(f_{j-2}, f_{j-1}, f_j), \ \omega_1 &= \omega_1(f_{j-1}, f_j, f_{j+1}), \ \omega_2 &= \omega_2(f_j, f_{j+1}, f_{j+2}) \\ \omega_* &\geq 0, \omega_0 + \omega_1 + \omega_2 = 1 \end{split}$$

• ω_* computed through **smoothness indicators** (scaled Sobolev seminorms of p_j^3), so that $\omega_j \approx 0$ if SC_j crosses discontinuity.

Extension to systems

- ENO property when discontinuities are well separated: ENO OK when only 1 discontinuity, not OK for interacting discontinuities.
- **Example:** $w_t + Aw_x = 0$, $A \ 2 \times 2$, eigenvalues ± 1 , right eigenvectors \mathbf{R}_{\pm} , left eigenvectors $\mathbf{L}_{\pm} \Rightarrow$ solutions of Cauchy problems with $w(x, 0) = w^0(x)$ given by

$$\boldsymbol{w}(x,t) = \beta_{-}(x+t)\boldsymbol{R}_{-} + \beta_{+}(x-t)\boldsymbol{R}_{+},$$
$$\boldsymbol{w}^{0}(x) = \beta_{-}(x)\boldsymbol{R}_{-} + \beta_{+}(x)\boldsymbol{R}_{+} \Leftrightarrow \beta_{\pm}(x) = \boldsymbol{L}_{\pm}^{T}\boldsymbol{w}^{0}(x)$$

- If β_± have isolated discontinuities at x_±, with x₋ > x₊, then waves will collide at t = (x₋-x₊)/2 > 0, so that reconstructions applied directly to the components of w might exhibit oscillations
- Reconstructions applied to the system of characteristic variables $L_{\pm}^T w$ will be ENO, since $\beta_{\pm}(x \mp t)$ have isolated discontinuities.
- Use reconstructions of local characteristic fluxes for nonlinear systems.

Nonlinear stability

 Non-practical rigorous nonlinear stability analysis of [Verwer and Sanz-Serna, 1984] ⇒ Poor man's analysis based on linearization about w and linear stability analysis:

$$w_t + f(w)_x - (A(w)w_x)_x = 0, \quad w(x,t) \in \mathbb{R} \Rightarrow$$

(linearization about \overline{w} , $w(x) = \overline{w} + \widetilde{w}(x)$)

$$\widetilde{w}_t + \underbrace{f'(\overline{w})}_{\gamma} \widetilde{w}_x - \underbrace{A(\overline{w})}_{\delta} \widetilde{w}_{xx} = 0$$

• For Explicit Euler's method, practical bound

$$\Delta t \left(\frac{\gamma}{\Delta x} + \frac{2\delta}{\Delta x^2} \right) \le 1$$

Nonlinear stability

 Non-practical rigorous nonlinear stability analysis of [Verwer and Sanz-Serna, 1984] ⇒ Poor man's analysis based on linearization about w and linear stability analysis:

$$w_t + f(w)_x - (A(w)w_x)_x = 0, \quad w(x,t) \in \mathbb{R} \Rightarrow$$

(linearization about \overline{w} , $w(x) = \overline{w} + \widetilde{w}(x)$)

$$\widetilde{w}_t + \underbrace{f'(\overline{w})}_{\gamma} \widetilde{w}_x - \underbrace{A(\overline{w})}_{\delta} \widetilde{w}_{xx} = 0$$

• For Explicit Euler's method, practical bound, semiempirical K

$$\Delta t \left(\frac{\max_{\bar{w}} |f'(\bar{w})|}{\Delta x} + \frac{2 \max_{\bar{w}} A(\bar{w})}{\Delta x^2} \right) \le K$$

• For systems

$$\Delta t \left(\frac{\max_{p,\bar{w}} |\lambda_p(f'(\bar{w}))|}{\Delta x} + \frac{2 \max_{p,\bar{w}} \lambda_p(A(\bar{w}))}{\Delta x^2} \right) \le K$$

IMEX schemes I

- Fully discrete 2nd order schemes are obtained by using Runge-Kutta ODE solvers on MOL equations for approximations
 ℝ^N ∋ wⁿ_j ≈ w_j(t_n), j = 1,...,L (wⁿ is a N × L matrix).
- Typical stability restriction of explicit solvers:

$$\Delta t \left(\frac{u / \max_{\boldsymbol{w}} \lambda_1(\boldsymbol{C}(\boldsymbol{w}))}{\Delta x} + \frac{D_a / \max_{\boldsymbol{w}} \lambda_1(\boldsymbol{C}(\boldsymbol{w}))}{\Delta x^2} \right) \le K$$

(Remember eigenvalues of C'(w) are $1 > 1/\lambda_1(C(w)) > \cdots > 1/\lambda_N(C(w)) > 1/(1 + \eta_N)$)

• $D_a \approx 0 \Rightarrow \Delta t \propto \Delta x \Rightarrow$ explicit solver \checkmark

• $D_a \gg 0 \Rightarrow \Delta t \propto \Delta x^2 \Rightarrow$ explicit solver \swarrow

IMEX schemes II

• Since Δx^2 comes from treating diffusion explicitly and do not want to treat convection implicitly, we consider the **Implicit-Explicit midpoint rule [Ascher, Ruuth, and Spiteri., 1997]**

$$\begin{split} \boldsymbol{w}^{n+1/2} &= \boldsymbol{w}^n + \frac{\Delta t}{2} \left(\boldsymbol{\mathcal{L}}(\boldsymbol{w}^n, t_n) + \boldsymbol{\mathcal{D}}(\boldsymbol{w}^{n+1/2}) \right) \\ \boldsymbol{w}^{n+1} &= \boldsymbol{w}^n + \Delta t \left(\boldsymbol{\mathcal{L}}(\boldsymbol{w}^{n+\frac{1}{2}}, t_n + \frac{\Delta t}{2}) + \boldsymbol{\mathcal{D}}(\boldsymbol{w}^{n+1/2}) \right). \end{split}$$

- Need to solve nonlinear equation for $w^{n+1/2}$, second step is explicit.
- It is 2nd order accurate and is stable under $\Delta t \propto \Delta x$

IMEX schemes III

• The lack of an explicit expression for $oldsymbol{C}(oldsymbol{w})$ in

$$\mathcal{D}(\boldsymbol{w})_j = D_a \frac{\boldsymbol{C}(\boldsymbol{w}_{j+1}) - 2\boldsymbol{C}(\boldsymbol{w}_j) + \boldsymbol{C}(\boldsymbol{w}_{j-1})}{\Delta x^2}$$

can be circumvented by a change of variables

$$c_{i,j} = C_i(\boldsymbol{w}_j^{n+\frac{1}{2}})$$
 ($i \equiv \text{component}, j \equiv \text{location}$),

so that (i, j) equation becomes

$$\underbrace{c_{i,j}(1+\frac{\eta_i}{\varphi(\sum_{k=1}^N c_{k,j})})}_{w_{i,j}^{n+\frac{1}{2}}} - \frac{\Delta t}{2} \frac{D_a}{\Delta x^2} (c_{i,j-1} - 2c_{i,j} + c_{i,j+1}) = \underbrace{\mathcal{G}_{i,j}^n}_{\text{known}}$$

 Change of variables shifts nonlinearity from the diffusion term, so that solution by Newton's method involves solving a block-tridiagonal system with small blocks of size N × N at each iteration step.

Pep Mulet (UV)

Outline

Introduction

- 2 Mathematical structure of EDM
- 3 Numerical schemes
- 4 Numerical experiments
 - 5 Conclusions
- 6 Bibliography

Loss of conservation of total mass, $N = 1, D_a = 0$

Loss(T) = $|\int_0^T uc_{inj}(t)dt - \Delta x \sum_{j=1}^L w_j^M|, M\Delta t = T$ NCS: Non Conservative Scheme ([Javeed et al., 2011]) CS: Conservative Scheme ([Donat et al., 2018])

	First order		Second Order	
	NCS	CS	NCS	CS
T = 0.5	0.016	4.1e-14	0.004	3.7e-14
T = 1.0	0.029	6.7e-14	0.008	6.4e-14
T = 1.4	0.036	8.5e-14	0.01	7.8e-14

Numerical setup

• Tóth isotherms $\varphi(c) = (1 + c^{\nu})^{\frac{1}{\nu}}$, heterogeneity parameter $\nu \in (0, 1]$.

- Use reference solution computed with $\Delta z = \frac{1}{25600}$ to compute approximate L^1 -errors of different schemes.
- CMP-UPW5: Upwind WENO5 applied to components of physical flux
- CHR-UPW5: Compute local characteristic fluxes (using left eigenvectors), reconstruct them with WENO5 and then go back to physical fluxes (using right eigenvectors)
- Stability restriction is better for CHR-UPW5 (better estimate of characteristic velocities) ⇒ larger ∆t for stability:

$$u rac{\Delta t}{\Delta z} < K$$
, CMP-UPW5, no characteristic information
 $u
ho^n rac{\Delta t}{\Delta z} < K$, $ho^n = \max_{w^n} \lambda_N(C'(w^n)) < 1$, CHR-UPW5

with (CFL) K = 0.8 sufficient to prevent instabilities in tests.

Three component displacement chromatography

- Mixture of two components and one displacer (solvent) proposed in [Javeed, Qamar, Seidel-Morgenstern, and Warnecke., 2011], N = 3.
- Parameters: $a_1 = 4, a_2 = 5, a_3 = 6, b_1 = 4, b_2 = 5, b_3 = 1, \epsilon = 0.5, u = 0.2.$
- Injection function in left (top) Dankwerts BC:

$$(\boldsymbol{f}(\boldsymbol{w}) - D_a \frac{\partial \boldsymbol{C}(\boldsymbol{w})}{\partial x})(x = 0, t) = u\boldsymbol{c}_{inj}(t)$$
$$\boldsymbol{c}_{inj}(t) = \begin{cases} (1, 1, 0) & 0 \le t < 0.1\\ (0, 0, c^{\mathsf{disp}}) & t \ge 0.1 \end{cases}$$

 $u\equiv$ injection velocity

Components 1 and 2 are injected between t = 0 and t = 0.1 with $c_1 = c_2 = 1$ at x = 0.

Component 3 (displacer) is injected from t = 0.1 with $c_3 = c^{\text{disp}}$.

• Initial empty column: $c_i(x, 0) = 0 \ \forall x \in (0, 1), i = 1, 2, 3.$

Same $\nu = 1$, different D_a , $c^{\text{disp}} = 1$

Solution for $\Delta x = \frac{1}{800}$, $\nu = 1$ (Langmuir isotherm) at times T = 1, 4, 8, 11 (remember $x = 0 \equiv$ top of column)

CMP-UPW5 (o) CHR-UPW5 (--) reference (-) First component, second component, third component (displacer)

Pep Mulet (UV)

42 / 50

Same $\nu = 1$, different D_a , $c^{\text{disp}} = 1$

Zoom T = 8 (smoother for larger D_a): isotachic train (square pulses)

CMP-UPW5 (o) CHR-UPW5 (--) reference (-) First component, second component, third component (displacer)

Pep Mulet (UV)

42 / 50

Same $D_a = 10^{-6}$, different ν , $c^{\text{disp}} = 1$

Solution for
$$\Delta x = \frac{1}{800}, D_a = 10^{-6}$$
 at times $T = 1, 4, 8, 11$

CMP-UPW5 (o) CHR-UPW5 (--) reference (-) First component, second component, third component (displacer)

Pep Mulet (UV)

43 / 50

Same $D_a = 10^{-6}$, different $\overline{\nu}$, $c^{\text{disp}} = 1$

Zoom T = 8 (faster displacement for lower ν)

CMP-UPW5 (o) CHR-UPW5 (--) reference (-) First component, second component, third component (displacer)

Pep Mulet (UV)

Efficiency

Efficiency comparison (approximate L^1 errors vs. CPU time) of CHR-UPW5 (*-) and CMP-UPW5 (\circ -) schemes for T = 8

- Solid lines for approximate *L*¹ error.
- $\mathcal{O}(1)$ errors at shocks dominate: discard 2% largest errors as outliers and compute approximate L^1 error with the rest (dashed lines).

Pep Mulet (UV)

$$\nu = 1, D_a = 10^{-5}, c^{\text{disp}} = 0.1$$

Not enough displacer concentration \Rightarrow no isotachic train (square pulses)

Outline

Introduction

- 2 Mathematical structure of EDM
- 3 Numerical schemes
- 4 Numerical experiments

5 Conclusions

- Extended conservative formulation of EDM to generalized Langmuir-type adsorption isotherms.
- Used numerical fluxes with high-order reconstructions of local characteristic fluxes to improve smearing and oscillations near the high gradients formed in the solutions.
- Shown IMEX schemes with characteristic-based convective fluxes may be competitive with respect to component-wise alternatives.
- Need to perform more experiments.

Outline

Introduction

- 2 Mathematical structure of EDM
- 3 Numerical schemes
- 4 Numerical experiments

5 Conclusions

J. Anderson.

A secular equation for the eigenvalues of a diagonal matrix perturbation.

Linear Algebra and its Applications, 246:49–70, 1996.

U. Ascher, S. Ruuth, and R. Spiteri.
 Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations.

Applied Numerical Mathematics, 25:151–167, 1997.

 R. Donat, F. Guerrero, and P. Mulet. Implicit-Explicit WENO scheme for the equilibrium dispersive model of chromatography.

Applied Numerical Mathematics, 123:22–42, 2018.

Bibliography II

R. Donat and P. Mulet.

A secular equation for the Jacobian matrix of certain multispecies kinematic flow models.

Numerical Methods for Partial Differential Equations, 26:159–175, 2010.

G. Guiochon, G. Shirazi, and M. Katti.
 Fundamentals of preparative and nonlinear chromatography (2nd ed.).
 Elsevier, 2006, 2006.

 A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high-order accurate essentially nonoscillatory schemes. III. *J. Comput. Phys.*, 71(2):231–303, 1987.

Bibliography III

 S. Javeed, A. Qamar, A. Seidel-Morgenstern, and G. Warnecke. Efficient and accurate numerical simulation of nonlinear chromatographic processes.

Computers and Chemical Engineering, 35:2294–2305, 2011.

- G.-S. Jiang and C.-W. Shu.
 Efficient implementation of weighted ENO schemes.
 J. Comput. Phys., 126(1):202–28, 1996.
- X.-D. Liu, S. Osher, and T. Chan.
 Weighted essentially non-oscillatory schemes.
 J. Comput. Phys., 115(1):200–212, 1994.

Bibliography IV

► C.-W. Shu and S. Osher.

Efficient implementation of Essentially Non-Oscillatory shock-capturing schemes.

J. Comput. Phys., 77:439-471, 1988.

► B. van Leer.

Towards the ultimate conservative finite difference scheme, V. A second order sequel to Godunov's method.

J. Comput. Phys., 32:101–136, 1979.

 J. G. Verwer and J. M. Sanz-Serna. Convergence of method of lines approximations to partial differential equations.

Computing, 33(3-4):297-313, 1984.