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Introduction

Liquid chromatography (from chemicool Chem. Dict.)

Liquid chromatography uses a column holding a porous solid
(stationary phase) to separate each substance in a solution by their
different interactions with the stationary phase.
The mixture to be separated is loaded onto the top of the column
followed by more solvent (displacer).
If things are done correctly (therefore the importance of simulations),
each substance can be collected at the bottom of the column.

N ≡ number of substances in solution (N = 3 in this example)
Follow notation in [Guiochon, Shirazi, and Katti., 2006]
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Introduction

Liquid chromatography I

Concentrations c∗(x, t) functions of position in column x and time t

ci ≡ concentration of substance i in solvent
cs,i ≡ concentration of substance i in stationary phase.

ε ≡ porosity (ratio of void space that can be filled by solution)

⇒εci + (1− ε)cs,i ≡ concentration of substance i

u ≡ velocity of mobile phase (solution)

⇒ uεci ≡ convective flux substance i

Radial effects in the column are “swept” into a diffusion term, with
coefficient Da (axial dispersion coefficient)

⇒ Daε
∂ci
∂x
≡ diffusive flux substance i
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Introduction

Liquid chromatography II

Continuity equations read, for i = 1, . . . , N :

∂(εci + (1− ε)cs,i)
∂t

+
∂(uεci)

∂x
=
∂2(Daεci)

∂x2

⇔∂ci
∂t

+
1− ε
ε

cs,i
∂t

+ u
∂ci
∂x

= Da
∂2ci
∂x2

.

In kinetic non-equilibrium models there are ODE

∂cs,i
∂t

= gi(c1, . . . , cN , cs,1, . . . , cs,N ), i = 1, . . . , N,

with stationary solutions given by cs,i = qi(c1, . . . , cN ), where qi are
some (known) functions named adsorption isotherms.
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Introduction

Equilibrium Dispersive Model

In Equilibrium Dispersive Model (EDM), assume instant
equilibrium, so that cs,i = qi(c1, . . . , cN ) holds at any time⇒

∂

∂t

(
ci +

1− ε
ε

qi(c1, . . . , cN )
)

+ u
∂ci
∂x

= Da
∂2ci
∂x2

EDM

There are initial conditions ci(x, 0) (usually = 0, corresponding to an
empty column) and boundary conditions

(uci −Da
∂ci
∂x

)(0, t) = ucinji (t), left (up) Dankwerts BC

Da
∂ci
∂x

(1, t) = 0 right (down) Neumann BC

for given injection functions cinji (t).
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Introduction

Ideal chromatography

In ideal chromatography, Da = 0, so that EDM model

∂

∂t

(
ci +

1− ε
ε

qi(c1, . . . , cN )
)

+ u
∂ci
∂x

= 0.

ci(x, 0) = c0
i (x)

ci(0, t) = cinji (t)

can be regarded as a system of conservation laws with conserved
variables ci if the roles of x and t are reversed, so that
ci(0, t) = cinji (t) is the “initial condition” and ci(x, 0) = c0

i (x) is the
“boundary condition”.
This is the usual chromatography model in many textbooks
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Introduction

Non-ideal chromatography

For Da 6= 0, one should regard ci as primitive variables and
wi = ci + 1−ε

ε qi(c1, . . . , cN ) as conserved variables and hope this
mapping be a change of variables

W : [0,∞)N → [0,∞)N ,

W i(c) = W (c)i = ci +
1− ε
ε

qi(c), c = (c1, . . . , cN )

Langmuir isotherm

qi(c1, . . . , cN ) =
aici

1 +
∑N

j=1 bjcj

for ai, bi > 0 are the standard for multicomponent liquid
chromatography.
Can (and will) assume b1 = · · · = bN = 1
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Introduction

Non-conservative formulation

For the Langmuir isotherm in
[Javeed, Qamar, Seidel-Morgenstern, and Warnecke., 2011] a
non-conservative scheme was proposed for the EDM: provided
W ′(c) is invertible (as we will see is the case) for classical solutions
we have the following equivalences

∂W (c)

∂t
+ u

∂c

∂x
= Da

∂2c

∂x2
⇔

W ′(c)
∂c

∂t
+ u

∂c

∂x
= Da

∂2c

∂x2
⇔

∂c

∂t
+ uW ′(c)−1 ∂c

∂x
= DaW

′(c)−1 ∂
2c

∂x2

Numerical schemes applied to this primitive variables formulation
might lead to lack of conservation and wrong shock speeds.
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Introduction

Conservative formulation

For Langmuir isotherms, we prove in [Donat, Guerrero, and Mulet, 2018]
that W is a change of variables with solution of EDM given by
c(x, t) = C(w(x, t)), C = W−1, and w(x, t) solving

∂w

∂t
+ u

∂C(w)

∂x
= Da

∂2C(w)

∂x2
= Da

∂

∂x

(
C ′(w)

∂w

∂x

)
,

where C ′(w) has distinct eigenvalues ≥ λmin > 0, so that
linearizations of these equations are well-posed.
Although there is no closed-form for C, Implicit-Explicit conservative
schemes were proposed.
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Introduction

Objective

Generalize results in [Donat, Guerrero, and Mulet, 2018] to isotherms

qi(c1, . . . , cN ) =
aici

ϕ(
∑N

j=1 cj)
, ai > 0

for functions ϕ satisfying:
1 ϕ : [0,∞)→ [1,∞) continuous and increasing bijection
2 ϕ′(c) > 0 continuous in (0,∞)

3
(

c
ϕ(c)

)′
> 0 ∀c ∈ (0,∞)

ϕ(c) = 1 + c for Langmuir isotherm satisfies these requirements.

Tóth isotherms ϕ(c) = (1 + cν)
1
ν for heterogeneity parameter

ν ∈ (0, 1] also satisfy these requirements (Langmuir isotherm for
ν = 1).
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Mathematical structure of EDM

Notation

Assume 0 < a1 < · · · < aN and denote ηi = (1−ε)ai
ε so that

W : [0,∞)N → [0,∞)N ,

Wi(c1, . . . , cN ) = civi(c), vi(c) = 1 +
ηi

ϕ(
∑N

j=1 cj)

1 < v1(c) < · · · < vN (c) < 1 + ηN

Aim to prove that W is a change of variables
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Mathematical structure of EDM

Jacobians W ′ I

Theorem 2.1
For ci > 0, i = 1, . . . , N , W ′(c) is diagonalizable with N distinct eigenval-
ues λi(c), i = 1, . . . , N , satisfying this interlacing property

1 < λ1(c) < v1(c) < λ2(c) < v2(c) < · · · < λN (c) < vN (c) < 1 + ηN

The (right) eigenvector Ri(c) corresponding to λi(c) is

Rij(c) =
cj

vj(c)− λi(c)
, j = 1, . . . , N.
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Mathematical structure of EDM

Jacobians W ′ II

Wi(c) = ci

(
1 +

ηi
ϕ(
∑

k ck)

)
⇒

W ′(c)ij =
∂Wi(c)

∂cj
= δi,j

vi︷ ︸︸ ︷(
1 +

ηi
ϕ(
∑

k ck)

)
− ci

∂vi
∂cj︷ ︸︸ ︷

ηj
ϕ′(
∑

k ck)

ϕ(
∑

k ck)
2
⇒

W ′(c) = D + γcηT , D = diag(v1, . . . , vN ), γ = −
ϕ′(
∑

k ck)

ϕ(
∑

k ck)
2

[Anderson, 1996, Donat and Mulet., 2010] N eigenvalues λ of “diagonal” +
“rank one matrix” given by N roots of secular equation

0 = Q(λ) = 1 +

N∑
i=1

γηici
vi − λ

(limλ→vi±Q(λ) = ±∞, coefficients γηici < 0, limλ→±∞Q(λ) = 1)
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Mathematical structure of EDM

Jacobians W ′ III

Since roots of Q are located in known intervals, Newton+bisection
can be used for their efficient computation.
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Mathematical structure of EDM

Invertibility of W I

Theorem 2.2
W : [0,∞)N → [0,∞)N (or W : (0,∞)N → (0,∞)N ),

Wi(c1, . . . , cN ) = civi(c), vi(c) = 1 +
ηi

ϕ(
∑N

j=1 cj)
,

is a bijection with inverse given by

Ci(w) =
wi

1 + ηi
p(w)

,

where p = p(w) ≥ 1 is the unique solution of the (scalar) equation

0 = S(p) =

N∑
i=1

wi
p+ ηi

− ϕ−1(p)

p
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Mathematical structure of EDM

Invertibility of W II

For w = (w1, . . . , wN ), wi ≥ 0, how solving for c = (c1, . . . , cN ), ci ≥ 0

wi = W i(c)⇔wi = ci

(
1 +

ηi

ϕ(
∑N

j=1 cj)

)
⇔ wi

1 + ηi
ϕ(

∑N
j=1 cj)

= ci ⇒

N∑
j=1

wi
1 + ηi

ϕ(
∑N
j=1 cj)

=

N∑
j=1

ci

This leads to p = ϕ(
∑N

j=1 cj) satisfying

0 =

N∑
i=1

wi
p+ ηi

− ϕ−1(p)

p
=: S(p).

Conversely, it can be seen that

Ci(w) =
wi

1 + ηi
p

, S(p) = 0⇒ C(W (c)) = c,W (C(w)) = w.
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Mathematical structure of EDM

Invertibility of W III

Can assume w 6= 0 for the existence of a unique solution of

0 =

N∑
i=1

wi
p+ ηi

− ϕ−1(p)

p
= S(p).

S(p) strictly decreasing, since wi

p+ηi
is so and

ϕ−1(p)

p
=

ϕ−1(p)

ϕ(ϕ−1(p))
=
( c

ϕ(c)
◦ ϕ−1

)
(p)

is increasing (crucial ϕ−1, c/ϕ(c) increasing)
S changes sign between 1 and p(w) = ϕ(

∑N
j=1 wj) > ϕ(0) = 1,

⇒ ∃!p ∈ (1, p(w))/S(p) = 0

(p efficiently found with bisection+Newton).
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Mathematical structure of EDM

Invertibility of W IV

Theorem 2.3
C = W−1 : (0,∞)N → (0,∞)N is continuously differentiable, C ′(w) is
diagonalizable with N distinct eigenvalues

1

λi(C(w))
∈ (

1

1 + ηN
, 1), i = 1, . . . , N

and same eigenvectors as W ′(C(w)).

W : (0,∞)N → (0,∞)N bijection, detW ′(c) 6= 0 ∀c ∈ (0,∞)N

By Inv. Fun. T., C = W−1 is differentiable
The chain rule yields C ′(w) = (W ′(C(w))−1, so that eigenvalues of
C ′(w) are 1/λi(C(w)), i = 1, . . . , N .
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Mathematical structure of EDM

Well-posedness I

From Theorem 2.3 EDM can be written as system of N equations

∂w

∂t
+
∂f(w)

∂x
= Da

∂

∂x

[
C ′(w)

∂w

∂x

]
, f(w) = uC(w).

For Da = 0, it is a strictly hyperbolic system of conservation laws,
since eigenvalues of uC ′(w),w ∈ (0,∞)N , are real and distinct.

For Da 6= 0 the system is parabolic, since the eigenvalues of
DaC

′(w),w ∈ (0,∞)N , are real and bounded below by positive
numbers, so that linearized problems are well-posed.
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Numerical schemes

Method Of Lines: wt + γwx = δwxx, x ∈ (0, 1), γ, δ > 0

For each xj = (j − 1
2)∆x, j = 1, . . . , L, ∆x = 1

L of the grid

we consider Finite Difference approximations

wx(xj , t) ≈
w(xj , t)− w(xj−1, t)

∆x
(1st order, upwind)

wxx(xj , t) ≈
w(xj+1, t)− 2w(xj , t) + w(xj−1, t)

∆x2
(2nd order)

Substitute into wt(xj , t) = (−γwx + δwxx)(xj , t)⇒

wt(xj , t) ≈ −γ
w(xj , t)− w(xj−1, t)

∆x
+ δ

w(xj+1, t)− 2w(xj , t) + w(xj−1, t)

∆x2

Get spatial semidiscretization for wj(t) ≈ w(xj , t), j = 1, . . . , L
(Periodic B.C.⇒ w0 = wL, wL+1 = w1)

w′j(t) = −γwj(t)− wj−1(t)

∆x
+ δ

wj+1(t)− 2wj(t) + wj−1(t)

∆x2

Pep Mulet (UV) Generalized models in chromatography 21 / 50



Numerical schemes

Method Of Lines: wt + γwx = δwxx, x ∈ (0, 1), γ, δ > 0

For each xj = (j − 1
2)∆x, j = 1, . . . , L, ∆x = 1

L of the grid

we consider Finite Difference approximations

wx(xj , t) ≈
w(xj , t)− w(xj−1, t)

∆x
(1st order, upwind)

wxx(xj , t) ≈
w(xj+1, t)− 2w(xj , t) + w(xj−1, t)

∆x2
(2nd order)

Substitute into wt(xj , t) = (−γwx + δwxx)(xj , t)⇒

wt(xj , t) ≈ −γ
w(xj , t)− w(xj−1, t)

∆x
+ δ

w(xj+1, t)− 2w(xj , t) + w(xj−1, t)

∆x2

Get spatial semidiscretization for wj(t) ≈ w(xj , t), j = 1, . . . , L
(Periodic B.C.⇒ w0 = wL, wL+1 = w1)

w′j(t) = −γwj(t)− wj−1(t)

∆x
+ δ

wj+1(t)− 2wj(t) + wj−1(t)

∆x2

Pep Mulet (UV) Generalized models in chromatography 21 / 50



Numerical schemes

Method Of Lines: wt + γwx = δwxx, x ∈ (0, 1), γ, δ > 0

For each xj = (j − 1
2)∆x, j = 1, . . . , L, ∆x = 1

L of the grid

we consider Finite Difference approximations

wx(xj , t) ≈
w(xj , t)− w(xj−1, t)

∆x
(1st order, upwind)

wxx(xj , t) ≈
w(xj+1, t)− 2w(xj , t) + w(xj−1, t)

∆x2
(2nd order)

Substitute into wt(xj , t) = (−γwx + δwxx)(xj , t)⇒

wt(xj , t) ≈ −γ
w(xj , t)− w(xj−1, t)

∆x
+ δ

w(xj+1, t)− 2w(xj , t) + w(xj−1, t)

∆x2

Get spatial semidiscretization for wj(t) ≈ w(xj , t), j = 1, . . . , L
(Periodic B.C.⇒ w0 = wL, wL+1 = w1)

w′j(t) = −γwj(t)− wj−1(t)

∆x
+ δ

wj+1(t)− 2wj(t) + wj−1(t)

∆x2

Pep Mulet (UV) Generalized models in chromatography 21 / 50



Numerical schemes

Method Of Lines: wt + γwx = δwxx, x ∈ (0, 1)

Linear PDE and linear discretization⇒ linear ODE.
In vector form:w

′
1(t)
...

w′L(t)

 =
γ

∆x


−1 0 . . . 1
1 −1 ˙ 0
. . . . . . . . . . . . . . . . .
0 . . . 1 −1


︸ ︷︷ ︸

Aconv

w1(t)
...

wL(t)



+
δ

∆x2


−2 1 0 . . . 1
1 −2 1 ˙ 0
. . . . . . . . . . . . . . . . . . . .
1 . . . 0 1 −2


︸ ︷︷ ︸

Adiff

w1(t)
...

wL(t)


⇒

w′(t) = Aw(t), A =
γ

∆x
Aconv +

δ

∆x2
Adiff ∈ RL×L, w(t) ∈ RL
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Numerical schemes

Stability I

Fully discrete numerical method for wnj ≈ wj(tn) ≈ w(xj , tn) by
applying Euler’s method to w′ = Aw (∆t = tn+1 − tn for sake of
argument):

wn+1 = wn + ∆t Awn = (I + ∆t A)wn ⇒
wn = (I + ∆tA)nw0, w0

j = w(xj , 0)

Powers of I + ∆tA, written in terms of spectral decomposition of A,

w0 =

L∑
p=1

zp, Azp = λpz
p ⇒ (I + ∆tA)nw0 =

L∑
p=1

(1 + ∆tλp)
nzp

do not blow up (solutions do not) if |1 + ∆tλp| ≤ 1, ∀p (stability)
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Numerical schemes

Stability II

von Neumann analysis: A circulant matrix⇒ eigenvectors
zp, p = 1, . . . , L, given by discrete harmonics zpj = eθpj i, θp = 2pπ

L ∆x

(Azp)j = −γ
zpj − z

p
j−1

∆x
+ δ

zpj+1 − 2zpj + zpj−1

∆x2

=
(
−γ 1− e−θp i

∆x
+ δ

eθp i − 2 + e−θp i

∆x2︸ ︷︷ ︸
λp

)
zpj

λp =

(
γ

∆x
+

2δ

∆x2

)
(cos θp − 1)− i γ

∆x
sin θp ⇒

|1 + ∆tλp| ≤ 1, ∀p⇔ ∆t

(
γ

∆x
+

2δ

∆x2

)
≤ 1

To attain fixed T = M∆t > 0 for ∆x ↓ 0, many (M →∞) tiny time
steps ∆t (no need for accuracy).
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Numerical schemes

Stability III

Upwinding crucial for stability: If δ = 0 and we had chosen the
2nd order central approximation wx(xj , t) ≈ w(xj+1,t)−w(xj−1,t)

2∆x then
Euler’s method would yield

λp = −γ e
θp i − e−θp i

2∆x
= −γ sin(θp)

∆x
i⇒ |1 + λp∆t| > 1 ∀∆t > 0.

On the other hand, no restriction on ∆t for stability of Implicit
Euler’s method wn+1 = wn + ∆t Awn+1

w0 =

L∑
p=1

zp, Azp = λpz
p ⇒

wn =

L∑
p=1

(1−∆tλp)
−nzp, |1−∆tλp|−1 < 1 ∀∆t > 0

but anyway need ∆t ∝ ∆x for accuracy
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Numerical schemes

General spatial semidiscretization

Spatial discretization of

∂w

∂t
+
∂f(w)

∂x
= Da

∂2

∂x2
C(w) + B.C.

denoted by (remember xj+1 − xj = ∆x ∀j)

w′ = L(w) +D(w), wj(t) ≈ w(xj , t) ∈ RN , j = 1, . . . , L

D(w)j = Da
C(wj+1)− 2C(wj) +C(wj−1)

∆x2

(L(w) = − γ

∆x
Aconvw,D(w) =

δ

∆x2
Adiffw in example)

For convergence to weak solutions, the convective term should be
obtained by differences of numerical fluxes (Lax-Wendroff Th.),

L(w)j = −
f̂(w)j+ 1

2
− f̂(w)j− 1

2

∆x
, f̂(w)j+ 1

2
= f̂(wj−r+1, . . . ,wj+r︸ ︷︷ ︸

2r

), r ≥ 1
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Numerical schemes

Convective terms and upwinding I

In a finite volume setting, numerical fluxes are usually obtained by
solving Riemann problems.
Although solving Riemann problems for chromatography for arbitrary
N can be challenging, the numerical flux for Godunov’s method is

f̂(wj ,wj+1) = f(R(0)),

where w(x, t) = R(x/t) is the solution of the Riemann problem
∂w

∂t
+
∂f(w)

∂x
= 0 w(x, 0) =

{
wj x > 0

wj+1 x < 0
Since the wave speeds are dictated by the eigenvalues (> 0) of
f ′(w), it follows that all the waves move right, so

w(0, t) = R(0) = wj ,∀t > 0,

and Godunov’s method is given by

f̂(wj ,wj+1) = f(wj) (upwind)
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Numerical schemes

Convective terms and upwinding II

Nice properties for Godunov’s method, but only 1st order accurate.
There are higher-order Godunov-type methods, as MUSCL schemes
([van Leer, 1979])

f̂
MUSCL

(wj−1,wj ,wj+1,wj+2) = f̂
Godunov

(w−
j+ 1

2

,w+
j+ 1

2

)

w−
j+ 1

2

= wj +
1

2
minmod(wj −wj−1,wj+1 −wj),

w+
j+ 1

2

= wj+1 −
1

2
minmod(wj+1 −wj ,wj+2 −wj+1)

minmod(a,b)j =
1

2
(sign(aj) + sign(bj)) min(|aj |, |bj |)

For scalar equations, they have the Total Variation Diminishing (TVD)
property, which ensures stability, but are at most 2nd order accurate
and 1st order accurate at smooth extrema.
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Numerical schemes

Convective terms and upwinding III

Instead of this, we aim at using finite difference schemes, following
[Shu and Osher, 1988]

Consider the example wt + γwx − δwxx = 0, f(w) = γw, γ > 0
wj(t) = w(xj , t)⇒

w′j = wt(xj , t),

L(v)j = −γwj − γwj−1

∆x
= −γwx(xj , t) +O(∆x)

D(v)j = δ
wj+1(t)− 2wj(t) + wj−1(t)

∆x2
= δ

∂2

∂x2
w(xj , t) +O(∆x)2

The local truncation error of the semidiscrete scheme is

w′ − L(w)−D(w) = O(∆x) +O(∆x2) = O(∆x)

so that the scheme is 1st order (and will be so when getting fully
discrete scheme with ODE solvers)

Pep Mulet (UV) Generalized models in chromatography 29 / 50



Numerical schemes

Convective terms and upwinding IV

For a second order approximation of the convective term, need also
upwinding, which does not necessarily imply that all the information
should be taken from the left, for γ > 0.
The challenge is getting an approximation of γwx(xj , t):

with accuracy of order ≥ 2.
involving more points to the left of xj than to the right.
being a finite difference of two numerical fluxes.

f̂(wj−1, wj , wj+1, wj+2) = γ(−1

6
wj−1 +

5

6
wj +

1

3
wj+1)⇒

wj = w(xj , t), w(·, t) ∈ C4 ⇒

f̂(wj−1, wj , wj+1, wj+2)− f̂(wj−2, wj−1, wj , wj+1)

∆x

= γ
1
6wj−2 − wj−1 + 1

2wj + 1
3wj+1

∆x
= γwx(xj , t) +O(∆x3)
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Numerical schemes

Convective terms and upwinding V

How do we get these formulae? If for a sufficiently smooth f

1

∆x

∫ xl+
∆x
2

xl−∆x
2

p+(x)dx = f(xl) = fl, l = k, . . . , k + n

1

∆x

∫ xl+
∆x
2

xl−∆x
2

p−(x)dx = f(xl), l = k − 1, . . . , k + n− 1

where p± are polynomial reconstructions of degree ≤ n, then

p+(x+ ∆x
2 )− p−(x− ∆x

2 )

∆x
= f ′(x) +O(∆xn+1)

The previous formula is obtained with n = 2, k = j − 1, fl = γwl

f̂(wj−1, wj , wj+1, wj+2) =p+(xj +
∆x

2
) = −1

6
fj−1 +

5

6
fj +

1

3
fj+1
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Numerical schemes

Essentially Non-Oscillatory Schemes

Essentially Non-Oscillatory property
[Harten, Engquist, Osher, and Chakravarthy, 1987]: let TV increase at the
level of the order of the method to get beyond 2nd order.
As example, consider the ENO3 reconstructions (n = 2, three points
in substencil SC∗, h = ∆x, x0 = 0, p+ ≡ p3

∗) which selects the
substencil from the whole 5 points stencil for which the data is
smoothest (based on divided differences) in order to avoid
discontinuities⇒ 3rd order schemes with ENO property.

Can get ENO if enough points can be fitted between discontinuities.
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Numerical schemes

Weighted Essentially Non-Oscillatory Schemes

If we had used the entire five-points stencil, then the scheme would
be 5th order accurate, but it would not be ENO.
In [Liu, Osher, and Chan, 1994, Jiang and Shu, 1996] Weighted
Essentially Non-Oscillatory schemes are proposed to transition
smoothly from the 5th order reconstruction in smooth zones to the
3rd order reconstruction in nonsmooth zones.
This is achieved by weighting the reconstructions p3

0, p
3
1, p

3
2

f̂j+ 1
2

= ω0p
3
0(xj+ 1

2
) + ω1p

3
1(xj+ 1

2
) + ω2p

3
2(xj+ 1

2
) (WENO5)

ω0 = ω0(fj−2, fj−1, fj), ω1 = ω1(fj−1, fj , fj+1), ω2 = ω2(fj , fj+1, fj+2)

ω∗ ≥ 0, ω0 + ω1 + ω2 = 1

ω∗ computed through smoothness indicators (scaled Sobolev
seminorms of p3

j ), so that ωj ≈ 0 if SCj crosses discontinuity.
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Numerical schemes

Extension to systems

ENO property when discontinuities are well separated: ENO OK
when only 1 discontinuity, not OK for interacting discontinuities.
Example: wt +Awx = 0, A 2× 2, eigenvalues ±1, right
eigenvectors R±, left eigenvectors L± ⇒ solutions of Cauchy
problems with w(x, 0) = w0(x) given by

w(x, t) = β−(x+ t)R− + β+(x− t)R+,

w0(x) = β−(x)R− + β+(x)R+ ⇔ β±(x) = LT±w
0(x)

If β± have isolated discontinuities at x±, with x− > x+, then waves
will collide at t = x−−x+

2 > 0, so that reconstructions applied directly
to the components of w might exhibit oscillations
Reconstructions applied to the system of characteristic variables
LT±w will be ENO, since β±(x∓ t) have isolated discontinuities.
Use reconstructions of local characteristic fluxes for nonlinear
systems.
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Numerical schemes

Nonlinear stability

Non-practical rigorous nonlinear stability analysis of
[Verwer and Sanz-Serna, 1984]⇒ Poor man’s analysis based on
linearization about w̄ and linear stability analysis:

wt + f(w)x − (A(w)wx)x = 0, w(x, t) ∈ R⇒

(linearization about w̄, w(x) = w̄ + w̃(x))

w̃t + f ′(w̄)︸ ︷︷ ︸
γ

w̃x −A(w̄)︸ ︷︷ ︸
δ

w̃xx = 0

For Explicit Euler’s method, practical bound

∆t

(
γ

∆x
+

2δ

∆x2

)
≤ 1

For systems

∆t

(
maxp,w̄ |λp(f ′(w̄))|

∆x
+

2 maxp,w̄ λp(A(w̄))

∆x2

)
≤ K
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∆t

(
maxw̄ |f ′(w̄)|

∆x
+

2 maxw̄ A(w̄)

∆x2

)
≤ K

For systems
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Numerical schemes

IMEX schemes I

Fully discrete 2nd order schemes are obtained by using Runge-Kutta
ODE solvers on MOL equations for approximations
RN 3 wn

j ≈ wj(tn), j = 1, . . . , L (wn is a N × L matrix).

Typical stability restriction of explicit solvers:

∆t

(
u/maxw λ1(C(w))

∆x
+
Da/maxw λ1(C(w))

∆x2

)
≤ K

(Remember eigenvalues of C ′(w) are
1 > 1/λ1(C(w)) > · · · > 1/λN (C(w)) > 1/(1 + ηN ))

Da ≈ 0⇒ ∆t ∝ ∆x⇒ explicit solver X

Da � 0⇒ ∆t ∝ ∆x2 ⇒ explicit solver 6 X
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Numerical schemes

IMEX schemes II

Since ∆x2 comes from treating diffusion explicitly and do not want to
treat convection implicitly, we consider the Implicit-Explicit
midpoint rule [Ascher, Ruuth, and Spiteri., 1997]

wn+1/2 = wn +
∆t

2

(
L(wn, tn) + D(wn+1/2)

)
wn+1 = wn + ∆t

(
L(wn+ 1

2 , tn +
∆t

2
) + D(wn+1/2)

)
.

Need to solve nonlinear equation for wn+1/2, second step is explicit.

It is 2nd order accurate and is stable under ∆t ∝ ∆x
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Numerical schemes

IMEX schemes III

The lack of an explicit expression for C(w) in

D(w)j = Da
C(wj+1)− 2C(wj) +C(wj−1)

∆x2

can be circumvented by a change of variables

ci,j = Ci(w
n+ 1

2
j ) (i ≡ component, j ≡ location),

so that (i, j) equation becomes

ci,j(1 +
ηi

ϕ(
∑N

k=1 ck,j)
)︸ ︷︷ ︸

w
n+ 1

2
i,j

−∆t

2

Da

∆x2
(ci,j−1 − 2ci,j + ci,j+1) = Gni,j︸︷︷︸

known

Change of variables shifts nonlinearity from the diffusion term, so
that solution by Newton’s method involves solving a block-tridiagonal
system with small blocks of size N ×N at each iteration step.
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Numerical experiments
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Numerical experiments

Loss of conservation of total mass, N = 1, Da = 0

Loss(T ) = |
∫ T

0 ucinj(t)dt−∆x
∑L

j=1w
M
j |,M∆t = T

NCS: Non Conservative Scheme ([Javeed et al., 2011])
CS: Conservative Scheme ([Donat et al., 2018])

First order Second Order
NCS CS NCS CS

T = 0.5 0.016 4.1e-14 0.004 3.7e-14
T = 1.0 0.029 6.7e-14 0.008 6.4e-14
T = 1.4 0.036 8.5e-14 0.01 7.8e-14
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Numerical experiments

Numerical setup

Tóth isotherms ϕ(c) = (1 + cν)
1
ν , heterogeneity parameter ν ∈ (0, 1].

Use reference solution computed with ∆z = 1
25600 to compute

approximate L1-errors of different schemes.
CMP-UPW5: Upwind WENO5 applied to components of physical flux
CHR-UPW5: Compute local characteristic fluxes (using left
eigenvectors), reconstruct them with WENO5 and then go back to
physical fluxes (using right eigenvectors)
Stability restriction is better for CHR-UPW5 (better estimate of
characteristic velocities)⇒ larger ∆t for stability:

u
∆t

∆z
< K, CMP-UPW5, no characteristic information

uρn
∆t

∆z
< K, ρn = max

wn
λN (C ′(wn)) < 1, CHR-UPW5

with (CFL) K = 0.8 sufficient to prevent instabilities in tests.
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Numerical experiments

Three component displacement chromatography

Mixture of two components and one displacer (solvent) proposed in
[Javeed, Qamar, Seidel-Morgenstern, and Warnecke., 2011], N = 3.
Parameters: a1 = 4, a2 = 5, a3 = 6, b1 = 4, b2 = 5, b3 = 1,
ε = 0.5, u = 0.2.
Injection function in left (top) Dankwerts BC:

(f(w)−Da
∂C(w)

∂x
)(x = 0, t) = ucinj(t)

cinj(t) =

{
(1, 1, 0) 0 ≤ t < 0.1

(0, 0, cdisp) t ≥ 0.1

u≡ injection velocity
Components 1 and 2 are injected between t = 0 and t = 0.1 with
c1 = c2 = 1 at x = 0.
Component 3 (displacer) is injected from t = 0.1 with c3 = cdisp.
Initial empty column: ci(x, 0) = 0 ∀x ∈ (0, 1), i = 1, 2, 3.
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Numerical experiments

Same ν = 1, different Da, cdisp = 1

Solution for ∆x = 1
800 , ν = 1 (Langmuir isotherm) at times T = 1, 4, 8, 11

(remember x = 0 ≡ top of column)

Da = 0 Da = 10−5

CMP-UPW5 (◦) CHR-UPW5 (−−) reference (−)
First component, second component, third component (displacer)
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Numerical experiments

Same ν = 1, different Da, cdisp = 1

Zoom T = 8 (smoother for larger Da): isotachic train (square pulses)

Da = 0 Da = 10−5

CMP-UPW5 (◦) CHR-UPW5 (−−) reference (−)
First component, second component, third component (displacer)
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Numerical experiments

Same Da = 10−6, different ν, cdisp = 1

Solution for ∆x = 1
800 , Da = 10−6 at times T = 1, 4, 8, 11

ν = 0.9 ν = 0.95

CMP-UPW5 (◦) CHR-UPW5 (−−) reference (−)
First component, second component, third component (displacer)
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Numerical experiments

Same Da = 10−6, different ν, cdisp = 1

Zoom T = 8 (faster displacement for lower ν)

ν = 0.9 ν = 0.95

CMP-UPW5 (◦) CHR-UPW5 (−−) reference (−)
First component, second component, third component (displacer)
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Numerical experiments

Efficiency

Efficiency comparison (approximate L1 errors vs. CPU time) of CHR-UPW5
(∗−) and CMP-UPW5 (◦−) schemes for T = 8

CPU CPU

ν = 0.9, Da = 10−5 ν = 1, Da = 0

Solid lines for approximate L1 error.
O(1) errors at shocks dominate: discard 2% largest errors as outliers
and compute approximate L1 error with the rest (dashed lines).
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Numerical experiments

ν = 1, Da = 10−5, cdisp = 0.1

Not enough displacer concentration⇒ no isotachic train (square pulses)
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Conclusions

Conclusions

Extended conservative formulation of EDM to generalized
Langmuir-type adsorption isotherms.
Used numerical fluxes with high-order reconstructions of local
characteristic fluxes to improve smearing and oscillations near the
high gradients formed in the solutions.
Shown IMEX schemes with characteristic-based convective fluxes
may be competitive with respect to component-wise alternatives.
Need to perform more experiments.
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