IX Partial differential equations, optimal design and numerics Benasque 2022, Aug 21 – Sep 02

> Optimal design versus maximal Monge-Kantorovich metrics.

> > joined work with:

Karol Bolbotowski, Faculty of Civil Engineering, Warsaw University of Technology

- Optimal design in mechanical engineering:
 - pre-stessed elastic membrane ($\sigma: \Omega \subset \mathbb{R}^2 \mapsto \mathcal{S}^{2 imes 2}_+$)
 - optimal vault problem (parametrized surface z = u(x, y))
 - Prager problem ($\sigma: \Omega \times (-h,h) \subset \mathbb{R}^3 \mapsto \mathcal{S}^{3 imes 3}$)
- Mathematics:
 - GMT approach for lower dimensional structures
 - Connexion with Monge optimal transport
 - Optimal metrics and related geodesics

• Karol Bolbotowski: Optimal vault problem – form finding through 2D convex program, *Comp. and Math. with Appli.*, (2022)

• K. Bolbotwski, GB: Optimal design versus maximal Monge-Kantorovich metrics, *Arch. Ration. Mech. Anal. 243* (2022), no. 3, 1449-1524.

- I- The classical optimal compliance problem (Euclidean metric)
- II- From free material design (FMD) to optimal pre-stressed membrane Pb (OM)
- III- Duality and PDE approach (smooth case)
- IV- The geometric OT approach (via maximal monotone maps)
- V- Two-point scheme and truss-like solutions (conjecture and numerics)

I- The classical optimal compliance problem

Scalar setting

- $\Omega \subset \mathbb{R}^d$ convex bounded design domain (d = 2, 3)
- $f \in \mathcal{M}(\Omega)$ a scalar measure (load or source term)
- $a: \Omega \to \mathbb{R}_+$ a conductivity (or stiffness) coefficient subject to $\int_{\Omega} a \, dx \leq m$ (design variable).
- $u: \Omega \to \mathbb{R}$ solving the state equation

 $-\operatorname{div} q = f$, $q = a \nabla u$ in Ω , u = 0 in $\partial \Omega$ (*)

• $\mathcal{E}_{\Omega,f}(a) := \frac{1}{2} \int f u$ is the compliance (convex functional of a)

Then we want to solve for given m > 0:

$$\mathcal{I}(m) = \inf \left\{ \mathcal{E}_{\Omega,f}(a) : \int_{\Omega} a \leq m \right\}$$
 (MOP)

A smooth pair (a, u) solving state equation (*) is optimal if

 $|\nabla u| \leq C$ a.e. in Ω , $|\nabla u| = C$ on $\{a > 0\}$ (**)

However:

- Existence ? minimizing (a_n) may concentrate (no L^{∞} bound)
- Case of discrete loads ? $(f \notin H^{-1}(\Omega))$

Existence is obtained by passing from smooth a(x) to measures $\mu \in \mathcal{M}_+(\overline{\Omega})$ while defining

$$\mathcal{E}_{\Omega,f}(\mu):= \sup\left\{\int f v - rac{1}{2}\int_{\Omega} |
abla v|^2\, d\mu \ : \ v\in \mathcal{D}(\Omega)
ight\}.$$

Second step: rewrite eikonal eq. (**) for optimal μ .

Back to years 1995: if u is Lipschitz, then $\nabla_{\mu} u$ can be defined in L^{∞}_{μ} so that $\nabla_{\mu} u \in T_{\mu}(x)$, μ -a.e. (tangent space to μ) and $\nabla_{\mu} u = \operatorname{Proj}_{T_{\mu}(x)}(\nabla u)$ for smooth u. [G.Buttazzo, P. Seppecher, GB: COCV (1995)], [T.Champion, C. Jimenez, GB (2005)], [I.Fragala, GB: JFA (2006)] for $\nabla^{2}_{\mu} u$

THM: For every measure $f \in \mathcal{M}(\Omega)$, \exists optimal (μ, u, q) in $\mathcal{M}_+(\Omega) \times \operatorname{Lip}(\Omega) \times \mathcal{M}(\Omega, \mathbb{R}^d)$ such that

 $q = (\nabla_{\mu} u) \mu$, $-\operatorname{div} q = f$ in $\mathcal{D}'(\Omega)$, u = 0 in $\partial \Omega$ (*)

(**)

 $|
abla u| \leq 1$ a.e. in Ω , $|
abla _{\mu} u| = 1$ μ -a.e.

Connexion with Monge optimal transport

[G.Buttazzo, P. Seppecher, GB: CRAS (1997)] [G.Buttazzo, GB: JEMS (2001)] Let $\mu, \nu \in \mathcal{M}_+(\overline{\Omega})$ such that $\mu(\overline{\Omega}) = \nu(\overline{\Omega})$; Then the Monge distance is given by

$$W_1(\mu,\nu) := \min\left\{\int_{\overline{\Omega}\times\overline{\Omega}}^{\text{euclidean distance}} |x-y| \quad \gamma(dxdy) : \gamma \in \Gamma(\mu,\nu)\right\}$$

(Kantorovich relaxation of $\inf \{ \int_{\overline{\Omega}} |x - Tx| \, \mu(dx) : T^{\sharp}(\mu) = \nu \}$). We set $W_1(\mu, \nu) = +\infty$ if $\mu(\overline{\Omega}) \neq \nu(\overline{\Omega})$

WHY the euclidean metric ?

 $|
abla u| \leq C$ a.e. in Ω \iff $|u(x)-u(y)| \leq |x-y|$ $orall (x,y) \in \Omega^2$

Key duality identities

We consider the linear programming problem:

 $\mathcal{I}_0(f,\Omega) := \sup \left\{ \langle f, u \rangle : u \in \operatorname{Lip}_1(\Omega), u = 0 \text{ in } \partial \Omega \right\}.$

where $f \ge 0$. The Monge distance from f to $\partial \Omega$ defined by

 $W_1(f,\partial\Omega) = \min\{W_1(f,g) : g \in \mathcal{M}_+(\partial\Omega)\}$

THM The following equalities hold (i) $\mathcal{I}_0(f, \Omega) = W_1(f, \partial \Omega)$ (Kantorovich-Rubinstein duality) (ii) $\mathcal{I}(m) = \frac{(\mathcal{I}_0(f, \Omega))^2}{2m}$ (inf sup = sup inf argument)

Remark: extension to signed measure *f* by setting:

 $W_1(f,\partial\Omega) = \min \{W_1(f_+ + \mu, f_- + \nu) : \mu, \nu \in \mathcal{M}_+(\partial\Omega)\}$

($\exists \text{ optimal } \mu,\nu \text{ s.t. } \int \mu \leq \int \mathit{f}_{-} \text{ and } \int \nu \leq \int \mathit{f}_{+})$

Recovering optimal u, γ, g, q, μ

Assume that $f \ge 0$ and denote for every $x \in \Omega$:

$$p_{\partial\Omega}(x) = \{y \in \partial\Omega : |x - y| = d(x, \partial\Omega)\}.$$

Then:

• $u(x) = d(x, \partial \Omega)$ optimal for $\mathcal{I}_0(f, \Omega)$ (visco. sol. of $|\nabla u| = 1$).

• Let $\{\gamma^x\}$ be a family in $\mathcal{P}(\mathbb{R}^d)$ and γ given by

$$\langle \gamma, \varphi \rangle = \int_{\Omega} \left(\int_{\partial \Omega} \varphi(x, y) \, \gamma^{x}(dy) \right) \, f(dx) \quad (\forall \varphi : \overline{\Omega}^{2} \to \mathbb{R}).$$

Then: γ optimal \iff spt $(\gamma^x) \subset p_{\partial\Omega}(x)$.

• For such γ , we get optimal μ and q in sliced form:

$$\mu = \int_{\Omega} \mathcal{H}^1 \, {igstarrow} \left[x, y
ight] \gamma(d x d y) \quad, \quad q = - \iint \lambda^{x, y} \, \gamma(d x d y) \;,$$

where the vector measure $\lambda^{x,y} = \mathcal{H}^1 \bigsqcup[x,y] \frac{y-x}{|y-x|}$.

Example with one Dirac mass

Take $f = \delta_{x_0}$ and Ω a square domain.

Then:

- $p_{\partial\Omega}(x_0)$ is a singleton $\{y_0\}$;
- unique optimal $\gamma = \delta_{x_0} \otimes \delta_{y_0}$;
- optimal $\mu = \mathcal{H}_1 \bigsqcup [x_0, y_0];$
- optimal flux $q = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mu$ ($abla u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ on $[x_0, y_0]$)
- Uniqueness of μ.

Ex: what happens if x_0 is moved horizontally up to the first diagonal? then to the center of the square ?

II- From free material design problem to optimal membrane problem

The free material design Problem (FMD)

An anisotropic variant of (MOP) is obtained by enlarging the set $\{\mu \in \mathcal{M}_+(\overline{\Omega}) : \int \mu \leq m\}$ to positive tensors $\sigma \in \mathcal{S}^{d \times d}_+(\overline{\Omega})$ (new unknown) to which we associate the compliance

$$\mathcal{C}_{\Omega,f}(\sigma) := \sup\left\{\int f v - rac{1}{2}\int_{\Omega} \langle \sigma,
abla v \otimes
abla v
angle \ : \ v \in \mathcal{D}(\Omega)
ight\}.$$

to be minimized over $\left\{ \sigma \in \mathcal{S}^{d \times d}_{+}(\overline{\Omega}) : \int \frac{1}{d} \operatorname{Tr} \sigma \leq m \right\}$.

•
$$\mathcal{C}_{\Omega,f}(\operatorname{Id} \mu) = \mathcal{E}_{\Omega,f}(\mu) \implies \tilde{\mathcal{I}}(m) := \inf(\operatorname{FMD}) \leq \mathcal{I}(m)$$

• Optimal σ for (FMD) are shown to be rank-one. Thus $\mathcal{I}(m) = d \tilde{\mathcal{I}}(m)$ [Bolbotowski-Lewinski (COCV-2022)]

The pre-stressed membrane model

pre-stressed membrane

after loading

- $\Omega \subset \mathbb{R}^2$ stands for an horizontal domain
- The design $\sigma \in \mathcal{M}(\overline{\Omega}; S^{2 \times 2})$ is the in plane stress of a thin membrane placed in Ω subject to:
 - a horizontal pre-load on the boundary (job of the designer)
 - a vertical pressure $f \in \mathcal{M}(\overline{\Omega})$
 - *u* represents the deflection of the membrane (pinned vertically on $\partial \Omega$).

The equilibrium of such a membrane requires two conditions:

- $\operatorname{Div}\sigma = 0$ in $\mathcal{D}'(\Omega)$ (in plane load supported in $\partial\Omega$)
- $\sigma \ge 0$ (membrane in tension only)

It is convenient to write the optimal membrane Pb with a normalized Lagrange multiplier of the trace constraint:

$$Z_{0} := \min_{\sigma \in \mathcal{M}(\overline{\Omega}; \mathcal{S}_{+}^{d \times d})} \left\{ \mathcal{C}_{\Omega, f}(\sigma) + \int \operatorname{Tr} \sigma : \operatorname{Div} \sigma = 0 \right\} \quad (OM).$$

Dropping $\mathrm{Div}\sigma=$ 0, gives the (FMD) counterpart

$$Z := \min_{\sigma \in \mathcal{M}(\overline{\Omega}; \mathcal{S}_{+}^{d \times d})} \left\{ \mathcal{C}_{\Omega, f}(\sigma) + \int \mathrm{Tr}\sigma \right\} \leq Z_{0}$$

Remark: $Z = \tilde{I}(m)$ for $m = \sqrt{\tilde{I}(1)}$ (thanks to $C(t\sigma) = \frac{1}{t}C(\sigma)$).

We expect that $Z_0 < Z$ since condition $Div\sigma = 0$ in (OM) rules out many competitors:

- $\sigma = \operatorname{Id} \mu$ admissible $\iff \mu = p \, dx$ for a constant p > 0
- $\sigma = p(x) \tau_C \otimes \tau_C \mathcal{H}^1 \sqcup C$ (for a curve C) $\iff C$ is a straight line connecting two points of $\partial \Omega$ and p is constant.
- Truss like structures: let $\tau^{x,y} := \frac{y-x}{|y-x|}$, $\gamma \in \mathcal{M}_+(\overline{\Omega} \times \overline{\Omega})$ and set

 $\sigma^{\gamma} := \iint \sigma^{x,y} \gamma(dxdy) \quad (\text{with } \sigma^{x,y} := \tau^{x,y} \otimes \tau^{x,y} \mathcal{H}^1 \, \sqsubseteq \, [x,y])$

Then σ^{γ} admissible $\iff \int \int \langle w(x) - w(y), \tau^{x,y} \rangle \gamma(dxdy) = 0 \quad \forall w \in \mathcal{D}(\Omega; \mathbb{R}^2).$

A geometrical condition for the equality $Z_0 = Z$

We introduce the the high ridge of $\boldsymbol{\Omega}$ defined by

 $M(\Omega) := \{x \in \Omega : d(x, \partial \Omega) \ge d(z, \partial \Omega) , \forall z \in \Omega\}$

THM: Assume $f \ge 0$. Then

$$Z_0 = Z \iff \operatorname{spt} f \subset M(\Omega).$$

Proof:

- Any optimal σ for (FMD) is rank one of the form σ^{γ} being γ an optimal plan for $W_1(f, \partial \Omega)$.
- If $f \ge 0$, $\gamma = \int_{\Omega} \nu^{x}(dy) f(dx)$ with $\nu^{x} \in \mathcal{P}(P_{\partial\Omega}(x))$.
- $\operatorname{Div}\sigma^{\gamma} = 0 \iff \int y \, \nu^{x}(dy) = x \;, \; \forall x \in \operatorname{spt}(f)$

hence the conclusion since

$$M(\Omega) = \{x \in \Omega : x \in \mathrm{co}(P_{\partial\Omega}(x))\}$$

Back to the one Dirac mass in a square

 $(a_i \text{ are centres of the square's sides})$

Remark: the high ridge of the square reduces to its center.

Examples of stress measures σ

$$\sigma = \iint \sigma^{x,y} \gamma(dxdy) \quad , \quad \sigma^{x,y} := \tau^{x,y} \otimes \tau^{x,y} \mathcal{H}^1 \, \sqsubseteq \, [x,y].$$

(a) $\operatorname{div} \sigma \neq 0$; (b) $\operatorname{div} \sigma = 0$ not optimal; (c) optimal

Some (numerical) optimal stress measures

(a) optimal σ for three asymmetric point forces; (b) optimal σ for point force and force distributed along a line; (c) optimal σ for a four points source (alternative solution in the top right corner)

III- Duality and PDE approach

Our duality scheme involves pairs $(q, \sigma) \in \mathcal{M}(\overline{\Omega} : \mathbb{R}^d \times \mathcal{S}^{d \times d}_+)$ and $(u, w) \in \mathcal{D}(\Omega; \mathbb{R} \times \mathbb{R}^d)$, noticing that

 $-\operatorname{div} \boldsymbol{q} = \boldsymbol{f}, \ \operatorname{Div} \boldsymbol{\sigma} = \boldsymbol{0} \iff \langle \boldsymbol{q}, \nabla \boldsymbol{u} \rangle + \langle \boldsymbol{\sigma}, \boldsymbol{e}(\boldsymbol{w}) \rangle = \langle \boldsymbol{f}, \boldsymbol{u} \rangle \quad \forall (\boldsymbol{u}, \boldsymbol{w})$

(sym. gradient e(w) acts as lagrange multiplier of $\text{Div}\sigma = 0$) The (OM) problem is recast as the primal problem

$$(\mathcal{P}) \quad \min\left\{\underbrace{\int \mathrm{Tr}\sigma + \frac{1}{2} \langle \sigma^{-1}q, q \rangle}_{J(q,\sigma)} : -\operatorname{div} q = f, \ \mathrm{Div}\sigma = 0\right\}$$

 $(J(q, \sigma) = \int \chi_{\mathcal{C}}^*(q, \sigma)$ is a convex, 1-homogeneous on measures).

The previous convex C is given by:

$$\mathcal{C} := \left\{ (z, M) \in \mathbb{R}^d imes \mathcal{S}^{d imes d} : rac{1}{2} z \otimes z + M \leq \mathrm{Id}
ight\}$$

Accordingly the dual problem reads

$$(\mathcal{P}^*) \sup_{(u,w)\in \operatorname{Lip}_0(\Omega;\mathbb{R}^{1+d})} \left\{ \langle f,u\rangle \ : \ \frac{1}{2}\nabla u\otimes \nabla u + e(w) \leq \operatorname{Id} \quad \text{a.e.} \right\}$$

Remark: The existence of solutions for (\mathcal{P}^*) is an open issue. A relaxed version will involves pairs $(u, w) \in W^{1,2}(\Omega) \times BV(\Omega; \mathbb{R}^d)$

Theorem

- i) $\min(\mathcal{P}) = \sup(\mathcal{P}^*)$
- ii) Admissible pairs (q, σ) and (u, w) are optimal iff $J(q, \sigma) = \langle f, u \rangle$.

The equality $J(q, \sigma) = \langle f, u \rangle$ can be localized after extending the duality via μ -tangential differential calculus. Let $\mu = \text{Tr}\sigma$ and $S \in L^{\infty}_{\mu}(\Omega; S^{d \times d}_{+})$ such that $\sigma = S \mu$. Then

$$J(q,\sigma) < +\infty \implies \exists heta \in (L^1_\mu)^d \; : \; q = (S heta)\, \mu.$$

The pairs $(q, S\mu) \in \mathcal{M}(\overline{\Omega}; \mathbb{R}^d \times S^{d \times d}_+)$ and $(u, w) \in \operatorname{Lip}(\Omega; \mathbb{R}^{1+d})$ are optimal for (\mathcal{P}) and (\mathcal{P}^*) respectively if and only if all the following conditions are satisfied:

Family of solutions for $\Omega = \{|x| \leq R_0\}$ and $f = \delta_{x_0}$

Let $x_0 \in \Omega$ and $d_0 = \sqrt{(R_0^2 - |x_0|^2)}$. Then for every $\nu \in \mathcal{P}(\partial \Omega)$ satisfying $x_0 = \int_{\partial \Omega} x \nu(dx)$, we get a solution to (\mathcal{P}) :

$$q = \int_{\partial\Omega} \lambda^{ imes, imes_0} \,
u(d extsf{x}) \quad, \quad \sigma = rac{1}{d_0} \int_{\partial\Omega} |x - x_0| \, \sigma^{ imes, imes_0} \,
u(d extsf{x})$$

while a Lipschitz solution (u, w) to (\mathcal{P}^*) is given by

$$u(x) = \sqrt{2}d_0 h(x)$$
, $w(x) = 2x_0 h(x)$,

the graph of *h* is the cone of vertex $(x_0, 1)$ with basis $\partial \Omega \times \{0\}$.

Solutions for Ω a rectangle and $f = \delta_{x_0}$

Only 3 cases (by symmetry): for each y_0 denotes the center of the disk passing through $\Sigma_0 := p_{\partial\Omega}(y_0)$ (2 or 3 points) ; the optimal (q, σ) in red stems from the OT plan $\gamma = \delta_{x_0} \otimes \nu$ where $\nu \in \mathcal{P}(\Sigma_0)$ has barycenter x_0 .

If L = 0, y_0 is the center of the square Ω and $\Sigma_0 := \{a_1, a_2, a_3, a_4\}$.

No existence result for dual problem

- (u_n) is bounded in $C^{0,\frac{1}{2}}(\overline{\Omega}) \cap W^{1,2}(\Omega)$.
- (w_n) is bounded in $(W^{1,1} \cap L^{\infty})(\Omega; \mathbb{R}^d)$

Bad new: $w_n \stackrel{*}{\rightharpoonup} w$ in $BV(\Omega; \mathbb{R}^d)$ (jumps of w are possible !)

Good new: Let
$$v(x) := \begin{cases} x - w(x) & \text{if } x \in \overline{\Omega} \\ x & \text{if } x \in \mathbb{R}^d \setminus \overline{\Omega}. \end{cases}$$

Then v agrees a.e. with a maximal monotone map $\mathbf{v} : \mathbb{R}^d \mapsto \mathbb{R}^d$ and we have compactness for the Kuratowski convergence of graphs.

Two points of view are possible:

- build a metric c_v associated with v and conider OT with respect to this new cost c_v
 (in (FMD) problem, v ≡ id and c_v(x, y) = |x y|)
- use a two-point duality scheme to get a truss-like reformulation of (*P*).

IV- The geometric OT approach

Maximal monotoniciy of v := id - w

Let (u, w) and set v := id - w. Then (u, w) is admissible for (\mathcal{P}^*) (i.e. fulfills the two-points condition) if and only if:

(i) v is maximal monotone and $v = \mathrm{id}$ on $\mathbb{R}^d \setminus \overline{\Omega}$

(ii)
$$u(x) - u(y) \le \ell_v(x, y) := \sqrt{2\langle v(y) - v(x), y - x \rangle}$$

By [Alberti, Ambrosio 1999], (i) and (ii) are stable under the uniform convergence of u and the graph convergence of v provided we accept muti-valued maps **v**. Accordingly we define:

$$\begin{split} \mathbf{M}_{\Omega} &:= \Big\{ \mathbf{v} : \mathbb{R}^d \mapsto \mathbb{R}^d \; : \; \mathbf{v} \; \text{max mono}, \; \mathbf{v} = \text{id} \quad \text{in } \mathbb{R}^d \setminus \overline{\Omega} \; \Big\}, \\ \ell_{\mathbf{v}}(x,y) &:= \min \Big\{ \sqrt{2\langle x' - y', x - y \rangle} \; : \; x' \in \mathbf{v}(x), \; \; y' \in \mathbf{v}(y) \Big\} \end{split}$$

 $(\ell_{\mathbf{v}} \text{ is not continuous in general but merely I.s.c})$

Relaxed dual problem

By using a technical density argument, we get

Theorem

$$\begin{split} \sup(\mathcal{P}^*) &= \max\left\{ \langle f, u \rangle \ : (u, \mathbf{v}) \in C_0(\Omega) \times \mathbf{M}_{\Omega} \ , \\ & u(x) - u(y) \leq \ell_{\mathbf{v}}(x, y) \ \forall (x, y) \in \overline{\Omega}^2 \right\} \end{split}$$

In the spirit of length spaces theory, we build a semi-metric associated with $\ell_{\mathbf{v}}$ given by:

$$c_{\mathbf{v}}(a,b) := \inf \left\{ \sum_{i=1}^{N-1} \ell_{\mathbf{v}}(x_i, x_{i+1}) : x_1 = a, x_N = b, N \ge 2 \right\}.$$

As c_v is the larger sub-additive function below ℓ_v , the inequality constraint above is equivalent to

$$u(x) - u(y) \le c_{\mathbf{v}}(x,y) \quad \forall (x,y) \in \overline{\Omega}^2.$$

Some properies of the semi-metric c_v

- $c_{\mathbf{v}}(a,b) \leq M |b-a|^{\frac{1}{2}}$ for every $(a,b) \in \Omega \times \Omega$.
- If the infimum $c_{\mathbf{v}}(a, b)$ is attained by a finite set $\{x_i, 1 \le i \le N\}$, then the polygonal curve $C = \bigcup_{i=1}^{N-1} [x_i, x_{i+1}]$ is a geodesic joining a to b and \mathbf{v} is tangentially affine on each $[x_i, x_{i+1}]$.
- $c_{\mathbf{v}}$ is a geodesic semi-distance on \mathbb{R}^d (Riemann sums trick). If $\mathbf{v}(x) = \{v(x)\}$ with v Lipschitz and $\varphi_{\mathbf{v}}(x, z) = \limsup_{h \to 0+} \frac{1}{h} c_{\mathbf{v}}(x, x + hz)$ (Finsler), then $L_{\mathbf{v}}(\gamma) = \int_0^1 \varphi_{\mathbf{v}}(\gamma(t), \gamma'(t)) dt$ for every $\gamma \in \operatorname{Lip}([0, 1]; \mathbb{R}^d)$.
- Given (a, b), the evaluation map v ∈ (M_Ω, h) → c_v(a, b) is concave and upper semicontinuous
 (h = Hausdorff distance between graphs).

Kantorovich-Rubinstein distance

To the sub-additive cost $c_{\mathbf{v}}$, we associate a semi-distance between two measures $\mu, \nu \in \mathcal{M}_+(\overline{\Omega})$:

$$W_{c_{\mathbf{v}}}(\mu,
u) := \min\left\{ \iint c_{\mathbf{v}}(x,y) \, \gamma(dxdy) \; \gamma \in \Gamma(\mu,
u)
ight\}$$

As for the euclidean cost, we define the distance of f to $\partial \Omega$:

$$W_{c_{\mathbf{v}}}(f,\Omega) := \min \left\{ W_{c_{\mathbf{v}}}(f_{+} + \mu, f_{-} + \nu) : g \in \mathcal{M}_{+}(\partial\Omega) \right\}.$$

Remark: the minimum above is reached on the compact subset $\{(\mu, \nu) \in (\mathcal{M}_+(\partial \Omega))^2 : \int \mu \leq \int f_-, \int \nu \leq \int f_+\}$. In particular

 $f \ge 0 \implies W_{c_{\mathbf{v}}}(f,\Omega) := \min \left\{ W_{c_{\mathbf{v}}}(f,g) : g \in \mathcal{M}_+(\partial\Omega) \right\}.$

Looking for maximal semi-metrics

Following Kantorovich -Rubinstein, we get the duality indentity:

 $W_{c_{\mathbf{v}}}(f,\Omega) = \sup_{u \in C_0(\Omega)} \{ \langle f, u \rangle : u(x) - u(y) \le c_{\mathbf{v}}(x,y) \text{ in } \Omega^2 \}.$

Then starting with the relaxed form of (\mathcal{P}^*) and performing the supremum in u first, then in \mathbf{v} :

Theorem:

$$\sup(\mathcal{P}^*) = \max \Big\{ W_{c_{\mathbf{v}}}(f, \partial \Omega) : \mathbf{v} \in \mathbf{M}_{\Omega} \Big\}.$$

 \rightarrow existence of a maximimal semi-metric c_v

Proof: Existence of optimal \mathbf{v} follows from the concavity and upper semicontinuity of $\mathbf{v} \to W_{c_{\mathbf{v}}}(f, \Omega)$.

Remark: search for worse MK metrics in a different context : G.Buttazzo and all (2004) , B. Scwheizer and S. Conti (2011)

V- Two points scheme and truss-like solutions

In view of numerics, the case of discretized loads f is important. To that aim, we go back to the formulation of (\mathcal{P}^*) as the supremum of $\langle f, u \rangle$ over smooth pairs (u, w) satisfying the two-point constraint

$$rac{1}{2} \left(\xi(u)
ight)^2 + \zeta(w) \leq |x-y|^2 ext{ in } \overline{\Omega}^2$$

where: $\xi(u) = u(x) - u(y)$ and $\zeta(w) = \langle w(x) - w(y), \tau^{x,y} \rangle$

The new scheme involves two multipliers $\pi, \Pi \in \mathcal{M}(\overline{\Omega} \times \overline{\Omega})$ in duality with $(\xi(u), \zeta(w))$ and leads to another convex problem:

$$(\mathscr{P}) \qquad \qquad \inf \left\{ \mathcal{J}(\pi, \Pi) \, : \, (\pi, \Pi) \in \mathscr{A} \right\}$$

here \mathscr{A} denotes the class of pairs (π, Π) such that

 $\begin{cases} (i) & \int (u(y) - u(x)) \pi(dxdy) = \langle f, u \rangle & \forall u \in C_{\Sigma_0}(\overline{\Omega}), \\ (ii) & \int \langle w(y) - w(x), \tau^{x,y} \rangle \Pi(dxdy) = 0 & \forall w \in C_0(\Omega; \mathbb{R}^d), \\ (iii) & \Pi \ge 0 \end{cases}$

 \mathcal{J} is a convex function on measures, finite only on (π, Π) such that $\Pi \geq 0$ and $\pi \ll \Pi$. If $\pi = \alpha \Pi$, then:

$$\mathcal{J}(\pi,\Pi) = \int_{\overline{\Omega}\times\overline{\Omega}} |x-y| \left(1+\frac{\alpha^2}{2}\right) \Pi(dxdy).$$

A truss formulation for (\mathcal{P})

Each $(\pi, \Pi) \in \mathscr{A}$ encodes a truss-like measure (q^{π}, σ^{Π}) which is admissible for (\mathcal{P}) $(-\operatorname{div} q = f \text{ and } \operatorname{Div} \sigma = 0)$:

$$q^{\pi} = \iint \lambda^{x,y} \pi(dxdy) \quad , \quad \sigma^{\Pi} = \iint \sigma^{x,y} \Pi(dxdy).$$

In general, the following inequality is strict:

 $J(q^{\pi}, \Sigma^{\Pi}) \leq \mathcal{J}(\pi, \Pi)$

Hence a priori, we expect merely $\inf(\mathscr{P}) \ge \min(\mathcal{P})$. In fact, by means of the dual problem, we can show

THM: $\inf(\mathscr{P}) = \sup(\mathcal{P}^*) = \min(\mathcal{P}).$

• Counter-examples show the non existence of solutions to (\mathscr{P}) for distributed source terms f

- Despite $\sup_n \iint |x y| d\Pi_n < +\infty$, minimizing sequences (Π_n) may blow up on the diagonal x = y
- Sometimes curved stress lines (geodesics) appear as in Michell's truss problem.
- Existence for (\mathscr{P}) is expected if f is finitely supported It relies on an extension property of monotone maps (conjecture) under wich competitors Π can be restricted to the class:

 $\mathsf{spt}(\mathsf{\Pi}) \subset \ (\mathsf{spt}(f) \times \partial \Omega) \cup (\mathsf{spt}(f) \times \mathsf{spt}(f) \setminus \Delta) \quad (\Delta = \mathsf{diagonal}).$

(so that $|x - y| \ge \delta > 0$ holds Π -a.e.)

- Let v₀ be a monotone map whose domain D₀ := dom(v₀) contains ℝ^d \ Ω. Then v₀ admits at least one maximal monotone extension and any such extension is defined over whole ℝ^d.
- \mathbf{v}_0 induces a sub-additive function $c_{\mathbf{v}_0}: D_0 \times D_0 \to \mathbb{R}_+$ similary as before.

We will say that \mathbf{v}_0 has the *metric extension property* if there exits a maximal monotone map \mathbf{v} of domain \mathbb{R}^d such that $\mathbf{v} \supset \mathbf{v}_0$ and $c_{\mathbf{v}} = c_{\mathbf{v}_0}$ in $D_0 \times D_0$.

Conjecture: Let S be a finite subset of Ω and $D_0 = S \cup (\mathbb{R}^d \setminus \overline{\Omega})$. Then any monotone map $\mathbf{v}_0 : D_0 \to \mathbb{R}^d$ such that $\mathbf{v}_0 = \mathrm{id}$ in $\mathbb{R}^d \setminus \overline{\Omega}$ has the metric extension property.

Numerical simulations

- Ω is the unite square $Q =]-1, 1[^2]$
- For h > 0 we use a grid $X_h = \overline{\Omega} \cap \{(k_1h, k_2h) : (k_1, k_2) \in \mathbb{Z}^2\}.$
- The load f is discretized as $f_h = \sum_{x \in \mathbf{X}_h} f\left(Q_h(x)\right) \delta_x$ where $Q_h(x) = x + hQ$
- For (\mathscr{P}_h) , we narrow the search down to finite trusses spanned by X_h while for (\mathscr{P}_h^*) the two-point constraint is checked on $K_k = X_h \times X_h$.
- Both problems (𝒫_h) and (𝒫_h^{*}) are handled as a pair of *conic* quadratic programs that we implement in MATLAB[®] with the use of the MOSEK[®] toolbox.

4 points source

(a) optimal σ_{Π} (alternative solution in the top right corner); (b) optimal λ_{π} ; (c) optimal u.

5 points source

(d) optimal σ_{Π} ; (e) optimal λ_{π} ; (f) optimal u.

Uniform pressure load

(g) optimal σ_{Π} ; (h) optimal u;

(i) eight equivalent $c_{\mathbf{v}}$ -geodesics from the central point x_0 to $\partial \Omega$ (computed for the numerical prediction of optimal \mathbf{v}).

The discretized load is denoted by black dots: (j) optimal σ_{Π} (higher resolution); (k) optimal λ_{π} (lower resolution); (l) optimal u.

8 points Dirichlet condition and uniform pressure

Dirichlet zone denoted by 8 solid squares: (m) optimal σ_{Π} (fractal ?); (n) optimal u; (o) component of w parallel to diagonal $[a_4, a_2]$ (discontinuous ?)

(p) optimal σ_{Π} for three asymmetric point forces; (q) optimal σ_{Π} for point force and force distributed along a line; (r) optimal $\sigma_{\Pi}, \lambda_{\pi}$ for a signed load (here $Z = Z_0$) Thank you for listening

Let $z \in C_0^1(\Omega)$ $(\Omega \subset \mathbb{R}^2)$ and the associated graph $S_z \subset \mathbb{R}^3$. Then to any $f \in \mathcal{M}_+(\overline{\Omega})$, we associate a vertical load pressure F_z supported in S_z

$$F_z := -T_z^{\sharp} f e_3$$
, $T_z(x) = (x, z(x))$

The vault problem reads

$$\inf_{z,\sigma} \left\{ \int |\mathrm{Tr}\sigma| \ : \ \operatorname{spt} \sigma \subset S_z, \ \sigma \leq 0 \ , \ -\mathrm{Div}\sigma = F_z \right\}$$

