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Motivations

@ Optimal design in mechanical engineering:

- pre-stessed elastic membrane (o : Q € R? v §2%?)
- optimal vault problem (parametrized surface z = u(x,y) )

- Prager problem (o :Q x (—h,h) C R3 s §3%3)

e Mathematics:
- GMT approach for lower dimensional structures
- Connexion with Monge optimal transport

- Optimal metrics and related geodesics



@ Karol Bolbotowski: Optimal vault problem — form finding
through 2D convex program, Comp. and Math. with Appli.,
(2022)

o K. Bolbotwski, GB: Optimal design versus maximal
Monge-Kantorovich metrics, Arch. Ration. Mech. Anal. 243
(2022), no. 3, 1449-1524.



Plan of the talk

|- The classical optimal compliance problem (Euclidean metric)

Il- From free material design (FMD) to optimal pre-stressed
membrane Pb (OM)

[ll- Duality and PDE approach (smooth case)
V- The geometric OT approach (via maximal monotone maps)

V- Two-point scheme and truss-like solutions (conjecture and
numerics)



I- The classical optimal compliance problem



Scalar setting

o Q C RY convex bounded design domain (d = 2,3)
o f € M(Q) a scalar measure (load or source term)

e a:Q — R, a conductivity (or stiffness) coefficient subject to
Jq adx < m (design variable).

@ u:Q — R solving the state equation
—divg=f , g=aVu inQ , u=0 indQ (x)
o Eqr(a) := 1 [ fu is the compliance (convex functional of a)

Then we want to solve for given m > 0:

z(m):inf{gﬂ,f(a) ; /Qagm} (MOP)\




Optimality and relaxation issues

A smooth pair (a, u) solving state equation (*) is optimal if
IVu| < C ae. inQ, |Vul=C on{a>0} ()

However:
o Existence ? minimizing (a,) may concentrate (no L* bound)
o Case of discrete loads ? (f ¢ H~(Q))

Existence is obtained by passing from smooth a(x) to measures

€ My (2) while defining

Ear(p) = sup{/fv—%/ﬂ]VW2 du : VED(Q)}.

Second step: rewrite eikonal eq. (**) for optimal p.



Tangential calculus with respect to a measure

Back to years 1995: if v is Lipschitz, then V,u can be defined in
LY so that V,u € T,(x), u-a.e. (tangent space to u) and

Vyuu = Projr,(Vu) for smooth u.

[G.Buttazzo, P. Seppecher, GB: COCV (1995)], [T.Champion, C.
Jimenez,GB (2005)], [I.Fragala, GB: JFA (2006)] for V2 u

THM: For every measure f € M(Q), 3 optimal (u,u,q) in
M (Q) x Lip(Q) x M(Q,R9) such that

g=(Vpu)p, —divg=Ff inD'(Q), u=0in9Q  (x)

[Vul| <1 ae inQ, |Vyul=1 pae (%x)

V.




Connexion with Monge optimal transport

[G.Buttazzo, P. Seppecher, GB: CRAS (1997)] [G.Buttazzo, GB: JEMS
(2001)]

Let p,v € M, (Q) such that u(Q) = v(Q); Then the Monge
distance is given by

euclidean distance

—
Wi (g, v) = min {/ Ix =yl A(dxdy) : v €T (u, V)}

QxQ

(Kantorovich relaxation of inf{ [g |x — Tx| u(dx) : T#(u) = v}).
We set Wi (u,v) = oo if u(Q) # v(Q)

WHY the euclidean metric ?

Vu| < C ae inQ < |u(x)—u(y)| <|x—y| ¥Y(x,y)eQ?



Key duality identities
We consider the linear programming problem:
To(f,Q) :==sup{(f,u) : v € Lip;(Q), u=0in9Q}.
where f > 0. The Monge distance from f to 02 defined by
Wi (f,00) = min{Wi(f,g) : g € ML (0Q)}

THM The following equalities hold
(i) Zo(f,Q2) = Wi(f,09) (Kantorovich-Rubinstein duality)

2
(i) Z(m) = W (inf sup = supinf argument)

Remark: extension to signed measure f by setting:
Wi(f,0Q) = min{Wi(fy +p,f- +v):pve My (0Q)}

(3 optimal p,vst. [pu< [f and [v < [f)



Recovering optimal u,~v, g, q, i

Assume that f > 0 and denote for every x € Q:

paa(x) ={y € 02 : |x — y| = d(x,09Q)}.

Then:
o u(x) = d(x,99Q) optimal for Zo(f, ) (visco. sol. of |[Vu| =1).

o Let {7*} be a family in P(R?) and v given by

(7, ) =/Q</aQ sO(Xay)*yX(dy)) fld) (Ve :Q° —R).

Then: ~ optimal <= spt(y*) C paqa(x).
@ For such ~, we get optimal u and g in sliced form:

p= [ ML) o a= =[x sa)

where the vector measure A = H! L [x, y] &:g.




Example with one Dirac mass

Take f = d,, and Q2 a square domain.

EN [

Then:
o paa(xo) is a singleton {yo};
@ unique optimal v = 8y, ® dy,;
e optimal = H1L [xo, yol;
@ optimal flux g = —(é) p (Vu= —((1)) on [xo, o))
@ Uniqueness of .

Ex: what happens if xg is moved horizontally up to the first diagonal?
then to the center of the square ?




[I- From free material design problem to optimal
membrane problem



The free material design Problem (FMD)

An anisotropic variant of (MOP) is obtained by enlarging the set
{p € M4 (Q): [ u< m} to positive tensors o € SiXd(ﬁ) (new
unknown) to which we associate the compliance

Car(0) :_sup{/fv_;/ﬂw,w@vm ; veD(Q)}.

to be minimized over {0 c SdXd f Tro < m}

o Cor(Idp) =Ear(n) = I(m):: inf(FMD) < Z(m)
o Optimal o for (FMD) are shown to be rank-one . Thus
Z(m) = dZ(m) [Bolbotowski-Lewinski (COCV-2022)]



The pre-stressed membrane model

pre-stressed membrane after loading

o Q C R? stands for an horizontal domain
o The design o € M(Q; $?*?) is the in plane stress of a thin
membrane placed in Q subject to:
- a horizontal pre-load on the boundary (job of the designer)

- a vertical pressure f € M(Q)
- u represents the deflection of the membrane (pinned vertically

on 09Q).



The equilibrium of such a membrane requires two conditions:
e Dive =0in D'(Q) (in plane load supported in 99 )
@ o >0 (membrane in tension only)

It is convenient to write the optimal membrane Pb with a
normalized Lagrange multiplier of the trace constraint:

Zy = min {CQJ(U) —i—/Tra . Dive = 0} (OM).
UEM(E;SiXd)

Dropping Divo = 0, gives the (FMD) counterpart

Z = min {CQJ(O’)—F/TI‘J} < Z
)

UEM(E;SiX d

Remark: Z = Z(m) for m = /Z(1) (thanks to C(to) = 1C(0)).

t



Comparison between (FMD) and (OM) problems

We expect that Zy < Z since condition Dive = 0 in (OM) rules
out many competitors:

@ o0 = Idpu admissible <= pu = pdx for a constant p > 0
0 0 =p(x)7c @7c H'L C (for a curve C) <= C is a straight
line connecting two points of 92 and p is constant.

o Truss like structures: let 7Y := v EML(QxQ)

_\yXI’

and set
7= //Ux’y y(dxdy) (with o™ == 7Y @ 7Y H L [x, y])

Then o7 admissible
= [[{w(x) = w(y), ) y(dxdy) =0 Vw € D(Q;R?).



A geometrical condition for the equality Zy = Z

We introduce the the high ridge of Q defined by
M(Q2) :={x € Q : d(x,00) > d(z,00Q) , Vz € Q}

THM: Assume f > 0. Then

Zy =27 = sptf C M(Q).

Proof:
o Any optimal o for (FMD) is rank one of the form o7 being ~
an optimal plan for Wi (f,09Q).
o If f>0,v= [,v*(dy)f(dx) with v* € P(Psqa(x)).
e Dive” =0 <= [yv*(dy) =x, Vx € spt(f)
hence the conclusion since

M(Q) = {x € Q: x € co(Paqa(x))}



Back to the one Dirac mass in a square

Lo

(FMD) (OM)

(a; are centres of the square’s sides)

Remark: the high ridge of the square reduces to its center.



Examples of stress measures o

o= // Y y(dxdy) , Y =Y @Y HL [x,y].

—e1 0y,

(a) (b)
(a) dive #0 ; (b) dive =0 not optimal; (c) optimal



Some (numerical) optimal stress measures

(@)

(a) optimal o for three asymmetric point forces;

(b) optimal o for point force and force distributed along a line;
(c) optimal o for a four points source (alternative solution in the
top right corner)



[1l- Duality and PDE approach



Primal problem

Our duality scheme involves pairs (q,0) € M(Q : RY x §9*9) and
(u,w) € D(Q; R x RY), noticing that

—divg=f, Dive =0 < (q,Vu)+(o,e(w)) = (f,u) Y(u,w)

(sym. gradient e(w) acts as lagrange multiplier of Dive = 0)

The (OM) problem is recast as the primal problem

(P) min{/Tw+%<J_lq,q> : —divg = f, DivazO}

A(q,0)

~

(J(q,0) = [ x&(g,0) is a convex, 1-homogeneous on measures).



Dual problem on Lipschitz funtions

The previous convex C is given by:
1
C:= {(z,/\/l) € RY x §9%9 . 2z®z+M§Id}

Accordingly the dual problem reads

(P*) sup {(f, u) : 1Vu@Vu—i—e(w) <Id a.e.}
(u,w)€ELipg(2;R1H9) 2

Remark: The existence of solutions for (P*) is an open issue. A
relaxed version will involves pairs (u, w) € W12(Q) x BV/(Q;RY)



No gap result and optimality conditions

Theorem
i) min(P) = sup(P*)
i) Admissible pairs (q,0) and (u, w) are optimal iff
J(g,0) = (f,u).

The equality J(q,0) = (f, u) can be localized after extending the
duality via u-tangential differential calculus. Let = Tro and
S € L2(Q:8¢*?) such that o = S i. Then

J(g,0) <400 = 0 e (L) : q=(50)p.



Optimality system

The pairs (g, Sp) € M(QRY x §9%9) and (u, w) € Lip(Q; R**9)
are optimal for (P) and (P*) respectively if and only if all the
following conditions are satisfied:

(i) u=0 ondQ, w=0 ondQ,

(i) —divg=f inD/(Q), Div(Su)=0 inD(Q),
(i) $Vu®Vu+e(w)<Id ae inQ,

(iv) ¢q=SV,u p-ae,

(v) (3VuweV,u+e (w),S)=TS u-ae,
(vi) p(0Q2)=0.




Family of solutions for Q = {|x| < Ry} and f = 4,

A
4
p

optimal u optimal o mixed 1d-2d structure

Let xo €  and dy = /(R3—|x0|?). Then for every v € P(Q)
satisfying xo = [, x v(dx), we get a solution to (P):

1

= — |x—x0| 07 v(dx)
do Jog

q= / Np(dx) |, o
o0
while a Lipschitz solution (u, w) to (P*) is given by
u(x) = V2do h(x) , w(x)=2xp h(x),

the graph of h is the cone of vertex (xp, 1) with basis 9Q x {0}.



Solutions for €2 a rectangle and f = ¢,

Only 3 cases (by symmetry): for each yo denotes the center of the disk
passing through X := paa(yo) ( 2 or 3 points) ; the optimal (g, o) in red
stems from the OT plan v = d,, ® v where v € P(X() has barycenter xg.

If L =0, yo is the center of the square Q and X := {a1, a, a3, as }.




No existence result for dual problem

Compactness of maximizing (u,, w,) € Lipg(Q2; R1*9) thanks to

1
5 Vu®Vu+e(w) < Id (unilateral constraint)

)

S180) — a0 = wly)x = y) < =y P W y) €@

(two-points condition)

(up) is bounded in C%2(Q) N W12(Q).
(wy) is bounded in (W11 N L%®)(Q; RY)

Bad new: w, = w in BV(Q;R?) (jumps of w are possible )



Relaxation issue ?

Good new: Let

v(x) = {X— w(x) ifx €Q B

X if x e RY\ Q
Then v agrees a.e. with a maximal monotone map v : RY — R9
and we have compactness for the Kuratowski convergence of
graphs.

Two points of view are possible:
@ build a metric ¢, associated with v and conider OT with
respect to this new cost ¢,
(in (FMD) problem, v =1id and ¢,(x,y) = |x — y|)
@ use a two-point duality scheme to get a truss-like
reformulation of (P).



I\V- The geometric OT approach



Maximal monotoniciy of v :=id — w

Let (u,w) and set v :=id — w. Then (u, w) is admissible for (P*)
(i.e. fulfills the two-points condition) if and only if:

(i) v is maximal monotone and v =1id on Rd \ﬁ
(i) u(x) = uly) < Ly(xy) = v/2{«( X),y = X)

By [Alberti, Ambrosio 1999], (i) and (ii) are stable under the
uniform convergence of u and the graph convergence of v provided
we accept muti-valued maps v. Accordingly we define:

Mg = {V:Rd»—ﬂRd : v max mono, v = id ian\ﬁ},

Oy(x,y) := min {\/2<x’ —yix—y) : X ev(x), y € v(y)}

(4y is not continuous in general but merely I.s.c)



Relaxed dual problem

By using a technical density argument, we get

Theorem
sup(P*) = max {(f, u)y :(u,v) € G(2) x Mq

u(x) - uly) < bulx,y) ¥(x,y) € 2.

In the spirit of length spaces theory, we build a semi-metric
associated with ¢, given by:

N-1

a(a, b) :=inf {Z O(Xiyxit1) @ x1=a, xy=b, N> 2} )

i=1

As ¢, is the larger sub-additive function below £, the inequality
constraint above is equivalent to

u(x) — u(y) < alx.y) Vixy) e’



Some properies of the semi-metric ¢,

e o(a,b)<M|b— a|% for every (a,b) € Q2 x Q.

o If the infimum ¢,(a, b) is attained by a finite set
{xi,1 < i < N}, then the polygonal curve C = U,N:_ll[x,',xiﬂ]
is a geodesic joining a to b and v is tangentially affine on each
[xi, Xxit1]-

® ¢ is a geodesic semi-distance on RY (Riemann sums trick).
If v(x) = {v(x)} with v Lipschitz and

1
ou(x,z) =lim sup cv(x,x + hz) (Finsler), then

h—0+

Ly(y) = fol N (’y(t),’/(t)) dt for every v € Lip([0, 1]; RY).

e Given (a, b), the evaluation map v € (Mq,h) — ¢,(a, b) is
concave and upper semicontinuous
(h = Hausdorff distance between graphs).



Kantorovich-Rubinstein distance

To the sub-additive cost ¢,, we associate a semi-distance between
two measures p, v € M4 (Q):

W, (1, v) = min {// a(x,y)y(dxdy) v € r(/J,,V)}
As for the euclidean cost, we define the distance of f to 0Q:

We, (F, Q) == min {W,,(fx + pu, - +v): g € M (0Q)}.

Remark: the minimum above is reached on the compact subset
{(n,v) € M4 (09))?: [u< [, [v < [ £} In particular

F>0 = W (f,Q):=min{W,(f,g):gec M0}



Looking for maximal semi-metrics

Following Kantorovich -Rubinstein, we get the duality indentity:

W, (f,Q) = sup {(f,u) : u(x)—u(y)<alx,y)in Q3}.

ue CQ(Q)

Then starting with the relaxed form of (P*) and performing the
supremum in u first, then in v:

Theorem:
sup(P*) = max{ch(f,BQ) D veE MQ}.

~> existence of a maximimal semi-metric ¢,

Proof: Existence of optimal v follows from the concavity and upper
semicontinuity of v — W, (f,Q). O

Remark: search for worse MK metrics in a different context :
G.Buttazzo and all (2004) , B. Scwheizer and S. Conti (2011)



V- Two points scheme and truss-like solutions



Dualizing again !

In view of numerics, the case of discretized loads f is important. To
that aim, we go back to the formulation of (P*) as the supremum
of (f, u) over smooth pairs (u, w) satisfying the two-point
constraint

E(W)?+Cw) < |x—yPin @
%)~ u(y) and ((w) = (w(x) = w(y), ™)

The new scheme involves two multipliers 7,1 € M(Q x Q) in
duality with (£(v),{(w)) and leads to another convex problem:

N —

where: {(u) = u

—~

(2) inf{j(w,l’l) L (m, M) e sz}




here .o/ denotes the class of pairs (7, 1) such that

() f (uly) — u(x) (dXdy) = (f, u) Vue G,(Q),
(i) [{w(y) — w(x), ™) M(dxdy) = 0 Yw e G(;RY),
(i) N>0

J is a convex function on measures, finite only on (7, ) such
that M >0and 7 < M. If 7 = oM, then:

= [ ey (145 ) ey



A truss formulation for (P)

Each (7, M) € & encodes a truss-like measure (g™, o) which is
admissible for (P) (—div g = f and Dive = 0):

q- = / / XY w(dxdy) , ol = / / ™Y MN(dxdy).

In general, the following inequality is strict:
J(q". =) < J(x. M)

Hence a priori, we expect merely inf(Z?) > min(P). In fact, by
means of the dual problem, we can show

THM: inf(2?) = sup(P*) = min(P).




Existence issue for truss solutions

e Counter-examples show the non existence of solutions to (&)
for distributed source terms f

- Despite sup, [[ |x — y|dM, < oo, minimizing sequences
(M) may blow up on the diagonal x =y

- Sometimes curved stress lines ( geodesics) appear as in
Michell’s truss problem.

e Existence for () is expected if f is finitely supported
It relies on an extension property of monotone maps (conjecture)
under wich competitors I1 can be restricted to the class:

spt(M) C (spt(f) x 9Q) U (spt(f) x spt(f) \ A) (A =diagonal).

(so that |[x — y| > & > 0 holds M-a.e.)



The extension conjecture

@ Let vop be a monotone map whose domain Dy := dom(vp)
contains RY \ Q. Then vo admits at least one maximal
monotone extension and any such extension is defined over
whole R,

@ vq induces a sub-additive function ¢, : Do X Dy — R4
similary as before.

We will say that vg has the metric extension property if there exits
a maximal monotone map v of domain RY such that v O vg and
G = Gy, in Dy x Dy.

Conjecture: Let S be a finite subset of Q and Dy = SU (R?\ Q).
Thenjny monotone map vg : Dy — RY such that vo = id in
RY\ Q has the metric extension property.



Numerical simulations

Q is the unite square Q@ =] — 1,1[?

For h > 0 we use a grid

Xp = Q0 {(kih, kah) : (ki ko) € Z?} .

The load f is discretized as fi, = >_, cx f(Qn(x)) dx where
Qn(x) = x+ hQ

For (Z74) , we narrow the search down to finite trusses

spanned by X}, while for (£7}) the two-point constraint is
checked on K, = X, x Xj.

Both problems (£7;) and (P}) are handled as a pair of conic

quadratic programs that we implement in MATLAB® with the
use of the MOSEK® toolbox.



4 points source

(c)

(a) optimal o (alternative solution in the top right corner); (b)
optimal Ax; (c) optimal u.



5 points source

0.08

0.24

0.08

0.30

(d) optimal op; (e) optimal Ax; (f) optimal w.



Uniform pressure load

(i)

(g) optimal op; (h) optimal u;

(i) eight equivalent ¢,-geodesics from the central point xp to 09
(computed for the numerical prediction of optimal v).



Diagonal load

.

\
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The discretized load is denoted by black dots: (j) optimal oy
(higher resolution); (k) optimal A, (lower resolution); (I) optimal wu.



8 points Dirichlet condition and uniform pressure

Dirichlet zone denoted by 8 solid squares:
(m) optimal o (fractal 7) ; (n) optimal u;
(o) component of w parallel to diagonal [as, a2] (discontinuous 7)



Miscellaneous

(p)

(p) optimal oy for three asymmetric point forces;
(q) optimal oy for point force and force distributed along a line;
(r) optimal op, A for a signed load (here Z = Zj )




Thank you for listening



Vertically transmisible load and vault problem

Let z € C3(Q) (e R?) and the associated graph S, C R3. Then
to any f € M (Q), we associate a vertical load pressure F,
supported in S,

F, = —Tifes |, Tix)=(x z(x))

The vault problem reads

inf{/\Tra\ csptoCS;, 0 <0, —Dive = Fz}
z,0






