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MOTIVATION



Motivation: Selective Harmonic Modulation (SHM)

This study has been conducted in the context of the research project CONVADP
(Elkartek program of the Basque Government)

PARTICIPANTS:

• Fundación Deusto

• Universidad de Mondragón

• Tecnalia

• Ingeteam

Scope of CONVADP

To develop new technologies to in-
crease the power density in elec-
tronic converters for high and low
power applications, including en-
ergy extraction from eolic turbines
or photovoltaic panels, drivers for
boats and electrical vehicles. Employment of a converter in an eolic turbine.

Source: nutechwindparts.com

A widely-employed technique is the Selective Harmonic Modulation.
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Selective Harmonic Modulation

Objective of SHM

Togenerate a control signal with a desired harmonic spectrumbymodulating
some specific lower-order Fourier coefficients. This signal is constructed as
a step function with a finite number of switches, taking values only in a given
finite set.

IMPORTANT FEATURES:

Waveform: the sequence of val-
ues that the function takes in its
domain.

Switching angles:, the se-
quence of points where the
signal switches from one value
to following one.
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MATHEMATICAL FORMULATION
OF THE SHM PROBLEM



Mathematical formulation of SHM

Goal

Construct a signal

u(t) : [0, 2π)→ U

in the form of a step function
with a finite number of switches,
such that some of its lower-order
Fourier coefficients take specific
values prescribed a priori.

U = {u1, . . . , uL} ⊂ R, L ≥ 2

u1 = −1, uL = 1 and u` < u`+1

for all ` ∈ {1, . . . , L}

• L = 2: bilevel signal

• L > 2: multilevel signal

Half-wave symmetry

u(t + π) = −u(t) for all t ∈ [0, π).

• u 7→ u|[0,π)

• u(t) =
∑
j∈N
j odd

aj cos( jt) +
∑
j∈N
j odd

bj sin( jt) aj =
2

π

∫ π

0
u(τ) cos( jτ)dτ

bj =
2

π

∫ π

0
u(τ) sin( jτ)dτ
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Mathematical formulation of SHM

Piecewise constant functions with a finite number of switches.

u(t) =
K∑

k=0

skχ[φk,φk+1)
(t), K ∈ N

Waveform

S = {sk}Kk=0 with sk ∈ U and sk 6= sk+1 for all k ∈ {0, . . . ,K}

Switching angles

Φ = {φk}Kk=1 such that 0 = φ0 < φ1 < . . . < φK < φK+1 = π
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Mathematical formulation of SHM

In practical engineering applications, due to technical limitations, it is preferable to
employ signals taking consecutive values in U .

Staircase property

We say that a piecewise con-
stant signal u fulfills the stair-
case property if its waveform
S satisfies

(smin
k , smax

k ) ∩ U = ∅
for all k ∈ {0, . . . ,K − 1},

where smin
k := min{sk, sk+1}

and smax
k := max sk, sk+1 .

Remark

Note that when U = {−1, 1} (bilevel problem), this property is satisfied by
any piece-wise linear function u : [0, π)→ U .
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Mathematical formulation of SHM

SHM problem - mathematical formulation

Let Ea and Eb be finite sets of odd numbers of cardinality |Ea| = Na

and |Eb| = Nb respectively. For any two given vectors aT ∈ RNa and
bT ∈ RNb , we want to construct a function u : [0, π)→ U in staircase
form such that the vectors a ∈ RNa and b ∈ RNb , defined as

a =
(
aj
)
j∈Ea

and b =
(
bj
)
j∈Eb

satisfy

a = aT and b = bT .
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Selective Harmonic Elimination

Remark

We gave a very general mathematical formulation of SHM. This formulation
contains also the so-called Selective Harmonic Elimination (SHE) problem,
in which the target vectors are such that

(aT)1 6= 0 (aT)i 6=1 = 0 for all i ∈ Ea
(bT)1 6= 0 (bT)j 6=1 = 0 for all j ∈ Eb.

SHE is of great relevance in the electric engineering literature. Its objective
is to generate a signal with amplitude

m1 =
√
a21 + b21

and phase

ϕ1 = arctan

(
b1
a1

)
,

removing some specific high-frequency components. In this way, SHE may
be understood as a generator of clean Fourier modes through a staircase
signal.
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SHM VIA FINITE-DIMENSIONAL
OPTIMIZATION



Finite-dimensional optimization for SHM

A typical approach to the SHMproblem is to look for signals uwith a specific waveform
S a priori determined, optimizing only over the location of the switching angles Φ.

Remark

For a fixed waveform S , the Fourier coefficients of u can be written in terms
of the switching angles Φ in the following way:

aj = aj(Φ) =
2

jπ

M∑
m=0

sm
[

sin( jφm+1)− sin( jφm)
]

bj = bj(Φ) =
2

jπ

M∑
m=0

sm
[

cos( jφm)− cos( jφm+1)
]

For two sets of odd numbers Ea and Eb and any fixed S , we can then define the
functions

aS(Φ) :=
(
aj(Φ)

)
j∈Ea
∈ RNa , bS(Φ) :=

(
bj(Φ)

)
j∈Eb
∈ RNb

which associate, to any sequence of switching angles {φm}Mm=1, the corresponding
Fourier coefficients.
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Finite-dimensional optimization for SHM

Therefore, SHM can be cast as a finite-dimensional optimization problem in
the following way.

Optimization problem for SHM

Let Ea, Eb, aT , and bT be given. Let S := {sm}Mm=0 be a fixed wave-
form satisfying the staircase property. We look for a sequence of
switching angles Φ = {φm}Mm=1 solution to the following minimization
problem:

min
Φ∈[0,π]M

(
‖aS(Φ)− aT‖2 + ‖bS(Φ)− bT‖2

)
subject to: 0 = φ0 < φ1 < . . . < φM < φM+1 = π
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Finite-dimensional optimization for SHM

Optimal value

We call optimal value VS : RNa × RNb → R, the function that takes as input
variables the target vectors aT and bT and returns the optimal value of the
optimization problem.

Solvable set

We define a solvable setRS as:

RS =
{

(aT ,bT) ∈ RNa+Nb : VS(aT ,bT) = 0
}

Policy

We call policy any function ΠS : RS → [0, π]M such that Φ∗ = ΠS(aT ,bT),
with Φ∗ being the optimal switching angles, solutions to the SHM problem
with target (aT ,bT).
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Finite-dimensional optimization for SHM

With the aim of reconstructing the policyΠS , a typical approach is to solve numerically
the optimization problem for a limited number of points in RNa+Nb and check that
the optimal value is zero. Secondly, one interpolates the function ΠS in the convex
set generated by the points previously obtained. Nevertheless, this approach has
several difficulties and drawbacks.

Combinatory problem

In practice, one does not dispose of a suitable waveform S which yields a
solution to the SHMproblem. A common approach to solve the SHMproblem
consists in fixing the number of switches M, and then solve the optimization
problem for all the possible combinations of M elements of U .

Taking into account that the number of possible M-tuples in U is of the order
(L− 1)M, it is evident that the complexity of the above approach increases
rapidly when L > 1.
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Finite-dimensional optimization for SHM

Solvable set problem

Given a waveform S , the corre-
sponding solvable setRS is usu-
ally very small, yielding to policies
ΠS which are not very effective.

This issue is addressed by solving
the optimization problem for a set
of waveforms {Sl}rl=1 and obtain-
ing different policies {ΠSl}

r
l=1 and

solvable sets {RSl}
r
l=1 . By gather-

ing them, one creates a new pol-
icy applicable in a wider range.

This union of policies may give
rise to regions where the solution
for the same target (aT ,bT) is not
unique, or even generate regions
with no solution at all.
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Finite-dimensional optimization for SHM

Policy problem

Due to the complexity of a policy generated by the union of differ-
ent waveforms, the continuity of the switching angles cannot be
guaranteed. This is a well known problem in the SHM community.
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SHM AS AN OPTIMAL CONTROL
PROBLEM



Optimal control for SHM

We propose to formulate the SHM problem as an optimal control one.

The Fourier coefficients of the signal u(t) are identified with the ter-
minal state of a controlled dynamical system ofNa+Nb components
defined in the time-interval [0, π).

The control of the system is the signal u(t), defined as a function
[0, π)→ U , which has to steer the state from the origin to the desired
values of the prescribed Fourier coefficients.

D. J. Oroya-Villalta, C. Esteve-Yagüe and U.B. - Multilevel Selective Harmonic Modulation via
optimal control, 2021.
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Optimal control for SHM

Step 1: dynamical system for the Fourier coefficients

For all u ∈ L∞([0, π);R) we have aj = ya(π) and bj = yb(π) with

ya(t) =
2
π

∫ t

0
u(τ) cos( jτ)dτ ∈ C([0, π);R)

yb(t) =
2
π

∫ t

0
u(τ) sin( jτ)dτ ∈ C([0, π);R)

Fundamental theorem of calculus

The functions ya(·) and yb(·) are the unique solutions to the differen-
tial equationẏa(t) =

2
π

cos( jt)u(t), t ∈ [0, π)

ya(0) = 0

ẏb(t) =
2
π

sin( jt)u(t), t ∈ [0, π)

yb(0) = 0
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Optimal control for SHM

Step 1: dynamical system for the Fourier coefficients

Hence, for Ea, Eb, aT , and bT given, the SHM problem can be reduced to:

SHM problem - dynamical system formulation

Find a staircase control function u such that the corresponding solution
y ∈ C([0, π);RNa+Nb ) to the dynamical systemẏ(t) =

2

π
D(t)u(t), t ∈ [0, π)

y(0) = 0

satisfies y(π) = [aT ;bT ]>, where

D(t) =

[
Da(t)
Db(t)

]
, Da(t) =


cos(e1at)
cos(e2at)

...
cos(eNa

a t)

 ∈ RNa , Db(t) =


sin(e1bt)
sin(e2bt)

...
sin(eNb

b t)

 ∈ RNb

Ea = {e1a, e2a, e3a, . . . , e
Na
a }, Eb = {e1b, e

2
b, e

3
b, . . . , e

Nb
b }
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Optimal control for SHM

Step 2: time reversion

We can reverse the time using the transformation x(t) = y(π − t). In this
way, the SHM problem turns into the following null controllability one.

SHM via null controllability

Let U , Ea, Eb and the targets aT and bT

be given. We look for a staircase func-
tion u : [0, π) → [−1, 1] such that the
solution to the initial-value problemẋ(t) =

2
π
C(t)u(t), t ∈ [0, π)

x(0) = [aT ,bT ]> =: x0

with C = −D satisfies x(π) = 0.
Evolution in the time horizon [0, π) of the
dynamics x with Ea = Eb = {1, 3}.
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Optimal control for SHM

Step 3: optimal control problem for SHM

Aad :=
{
u : [0, π)→ [−1, 1] measurable satisfying the staircase property

}
Optimal control problem for SHM

Let U , Ea, Eb and the targets aT and bT be given. We look for an admissible
control u ∈ Aad solution to the following optimal control problem:

min
u∈Aad

1

2
‖x(π)‖2. (OCP1)

Remark

The cost functional (OCP1) is quadratic and the existence of at least one
minimizer is ensured for any target [aT ,bT ]> .

Such a minimizer solves the SHM problem if and only if the minimum of
(OCP1) is zero. Otherwise, the target [aT ,bT ]> is unreachable.

Due to the limitations on the size of controls (u ∈ U ) and the time horizon
(T = π), not every target [aT ,bT ]> ∈ RNa+Nb is reachable.
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Optimal control for SHM

Step 4: penalized optimal control problem for SHM

The optimal control problem (OCP1) is defined on the non-convex set Aad to take
into account the staircase constraints on u.

In order to have a convex optimal control problem, we add a penalization term for
the control to the cost functional, and remove the staircase constraint on the control.

Penalized optimal control problem for SHM

Fix ε > 0 and a convex function L ∈ C([−1, 1];R). Let Ea, Eb and the targets
aT and bT be given. We look for a control

u ∈ A :=
{
u : [0, π)→ [−1, 1] measurable

}
solution to the following optimal control problem:

min
u∈A

(
1

2
‖x(π)‖2 + ε

∫ π

0
L(u(t))dt

)
. (OCP2)

The multilevel and staircase form of u can be both ensured by a suitable choice of
the penalization function L.
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Multilevel SHM

Theorem

Let U and x0 be given. For any α > 0 and β ∈ R, set the function

P(u) = α(u− β)2.

Consider (OCP2) with

L(u) =

{
λ`(u) if u ∈ [u`, u`+1)

P(1) if u = uL
for all ` ∈ {1, . . . , L− 1},

λ`(u) :=
(u− u`)P(u`+1) + (u`+1 − u)P(u`)

u`+1 − u`
.

Assume thatL has a uniqueminimum in [−1, 1]. Then, (OCP2) admits a unique
minimizer uε which has the multilevel and staircase structure. Moreover, uε
is continuous with respect to x0 in the strong topology of L1(0, π). Finally,
the associated optimal trajectory xε satisfies ‖xε(π)‖2RN ≤ 4πε‖L‖∞ .

D. J. Oroya-Villalta, C. Esteves-Yagüe and U. B., Multilevel Selective Harmonic Modulation via
optimal control, 2021.
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Proof (sketch)

Existence and uniqueness of the minimizer: they can be obtained via a
standard argument since the functional is convex with respect to the control,
the admissible controls in A are uniformly bounded and the dynamical
constraints are linear.
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Proof (sketch)

Existence and uniqueness of the minimizer: they can be obtained via a
standard argument since the functional is convex with respect to the control,
the admissible controls in A are uniformly bounded and the dynamical
constraints are linear.

Continuity of solutions: the argument uses the fact that the optimal solu-
tions are uniformly bounded in BV(0, π) ↪→ L1(0, π) with compact embed-
ding. More details can be found in
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Proof (sketch)

Multilevel structure and staircase property: introduce the Hamiltonian

H(t,p, u) = εL(u)− µ(t)u(t), µ(t) :=
2
π

(
p(t) · D(t)

)
and derive the optimality conditions via Pontryagin’s Maximum Principle.

1. The adjoint system reads asṗ
∗(t) = −∇xH(u(t),p∗(t), t) = 0, t ∈ [0, π)

p∗(π) = x∗(π)
→ p∗(t) = x∗(π).

2. Optimality condition:

u∗(t) ∈ argmin
|u|≤1

[
εL(u)− µ∗(t)u

]
µ∗(t) :=

2
π

(
x∗(π) · D(t)

)
=
∑
j∈Ea

a∗j (π) cos( jt) +
∑
j∈Eb

b∗j (π) sin( jt).

With our choice of L(u), the above argmin is a singleton for a.e. t ∈ [0, π),
except for a finite number of times (the switching angles).
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Proof (sketch)

Staircase property:

H(u) = εL(u)− µ(t)u
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ADJOINT FORMULATION



Adjoint formulation of the SHM problem

Applying the Fenchel-Rockafellar theory, we can build the following dual
problem

pε,π = argmin
pπ∈RN

Jε(pπ)

Jε(pπ) =

∫ π

0
L?
(
C>(t)pπ

)
dt +

ε

2
‖pπ‖2RN + 〈x0,pπ〉,

where

C(R) 3 L?(v) = sup
u∈R

(
uv− L(u)

)
is the convex conjugate of L and is still a piece-wise linear function.
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Adjoint formulation of the SHM problem

Theorem

For any ε > 0, there exists a unique minimizer pε,π ∈ RN of the
functional Jε. Moreover, this minimizer is related with the minimizer
uε of (OCP2) through the formulas

uε(t) ∈ ∂L?
(
C>(t)pε,π

)
, for a.e. t ∈ [0, π)

and

xε(π) = −εpε,π.

U. B. and E. Zuazua, Selective Harmonic Modulation by duality, 18th IFAC workshop on Control

Applications of Optimization, Gif-sur-Yvette, France, July 18-22, 2022.
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NUMERICAL EXPERIMENTS



Numerical experiments

Control set

Test 1: U = {−1,0, 1}

Test 2: U =

{
−1,−

1

2
,0,

1

2
, 1
}

Common parameters

Ea = Eb = {1, 5, 7, 11, 13}

aT = bT = (m,0,0,0,0)
m ∈ [−0.8,0.8]

ε = 10−6

For all the experiments, we plot the function

Φ : [−0.8,0.8]× [0, π] −→ U
(m, t) 7−→ u∗m(t),

where for eachm ∈ [−0.8,0.8], u∗m(·) represents the solution to the SHM problem
with the desired target frequencies.

To solve the minimization problem we implement the interior point method via the
optimization software IPOPT, coupled with the open-source tool for nonlinear opti-
mization and algorithmic differentiation CasADi.
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Test case 1

Top view of the 3-level
control.

Side view of the 3-level
control.
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Test case 1 - error

‖xε(π)‖2R10 for all values of the modulation indexm ∈ [−0.8,0.8].
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Test case 2

Top view of the 5-level
control.

Side view of the 5-level
control.
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MULTILEVEL CONTROL FOR
ODE SYSTEMS



Multilevel control for ODE systems

The concept of multilevel control can be generalized to linear finite-
dimensional controlled systems{

x′(t) = Ax(t) + Bu(t), t ∈ (0, T)

x(0) = x0
(1)

satisfying the Kalman rank condition.

U. B. and E. Zuazua, Multilevel control by duality, 2021.

We callmultilevel control a piece-wise constant function u ∈ L∞(0, T;R)
with finitely-many jumps, taking values in a set of levelsR := {ρ1, . . . , ρL} ⊂
R with

ρk < ρk+1, for all k ∈ {1, . . . , L− 1}

and such that the corresponding solution to (1) satisfies x(T) = 0.
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Multilevel control for ODE systems

Conservative or dissipative dynamics: we can construct a multilevel and staircase
control solving

p∗T,ml = argmin
pT∈RN

Jml(pT)

{
−p′(t) = A>p(t), t ∈ (0, T)

p(T) = pT

Jml(pT) =

∫ T

0
L(B>p(t))dt + 〈x0,p(0)〉RN

with a suitably chosen penalization function L, provided that the time horizon T is
large enough.
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Choice of the penalization function L

We design L as a piece-wise affine interpolation of P(u) = u2 .

Let I := [$i, $f ] ⊂ R with 0 ∈ I, and let L ≥ 2. On I, we introduce an L + 1-points
partition U defined as

U = {u1, . . . , uL+1} with u1 = $i < 0, uL+1 = $f > 0 (2a)

uk < uk+1, for all k ∈ {1, . . . , L} (2b)

uk 6= 0, for all k ∈ {1, . . . , L + 1} (2c)

λk(u) := (uk+1 + uk)u− uk+1uk, for all k ∈ {1, . . . , L} (3)

straight line joining (uk, u2k) and (uk+1, u2k+1), with slope λ
′
k(u) = uk+1 + uk .

Penalization L

L(u) :=


λ1(u) if u < u1
λk(u) if u ∈ [uk, uk+1], k ∈ {1, . . . , L}
λL(u), if u > uL+1

. (4)
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Main result - I

Theorem

Assume that A ∈ RN×N with rank(A) = N defines either a conservative or a
dissipative dynamics, and let B ∈ RN be such that the pair (A,B) fulfills the
Kalman rank condition. For a given N 3 L ≥ 2, let U = {uk}L+1

k=1 be defined as
in (2a)-(2c) and let L : R→ R be constructed as in (3)-(4). Then, the following
facts hold:

1. There exists a positive time T∗ = T∗(x0,L) > 0 such that, for all T ≥ T∗,
Jml(pT) admits a minimizer p∗T,ml ∈ RN .

2. Let p∗T,ml ∈ RN be a minimizer of Jml and let p∗ml denote the associated

solution of the adjoint equation. LetR = {ρk}Lk=1 with ρk = uk+1 + uk
for all k ∈ {1, . . . , L}. Then, the function u∗ml defined through

u∗ml ∈ ∂
(
L(B>p∗ml)

)
is a multilevel and staircase control taking values in R such that, for
any initial datum x0 ∈ RN, the corresponding solution x to (1) fulfills
x(T) = 0.

U. B. and E. Zuazua, Multilevel control by duality, 2021.
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Main result - I

Remark

The choice of the interpolation points U = {uk}L+1
k=1 determines the slopes

of the affine branches λk(u) composing the penalization function L and,
therefore, the set of levelsR for the multilevel control.

In some situations, it is possible to proceed the other way around, fixing
a priori this set of levels R = {ρk}Lk=1 and then selecting the interpolation

points U = {uk}L+1
k=1 fulfilling (2a)-(2c) and such that

uk+1 + uk = ρk, for all k ∈ {1, . . . , L}.

Particular examples of an admissible penalization L built prefixing the set of levelsR.
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Proof

STEP 1: existence of a minimizer.

The existence of aminimizerp∗T,ml is a consequence of the directmethodof calculus of
variations, since the functional Jml is convex, continuous and coercive (if the dynamics
is conservative or dissipative and provided that the time horizon T is large enough).

STEP 2: multilevel structure of the controls

The minimizers of Jml are characterized by the optimality condition 0 ∈ ∂Jml(p∗T,ml).
This is equivalent to the Euler-Lagrange equation

0 ∈
∫ T

0
∂L(B>p∗ml(t))B>p(t)dt + 〈x0,p(0)〉RN for all pT ∈ RN,

Iml :=
{
t ∈ (0, T) : B>p∗ml(t) = uk, ∃ k ∈ {2, . . . , L}

}
⇒ µ(Iml) = 0

Hence, u∗ml(t) ∈ ∂L(B>p∗ml(t)) is a null-control such that x(T) = 0.

• Multilevel structure: consequence of

∂L(u) =

{
L′(u) if u 6= uk ∈ U for all k ∈ {2, . . . , L}
[ρk−1, ρk] if u = uk ∈ U for some k ∈ {2, . . . , L}

• Staircase structure: consequence of the continuity of B>p∗ml . 43/58



Main result - II

General dynamics: for general dynamics that satisfy the Kalman rank con-
dition but are neither purely conservative nor purely dissipative, we can
construct a multilevel and staircase control for any T > 0 solving

p∗T,ml = argmin
pT∈RN

Jml(pT)

Jml(pT) =
1
2

(∫ T

0
L(B>p(t))dt

)2

+ 〈x0,p(0)〉RN .

Control

u∗ml ∈ ΛT,ml∂
(
L(B>p∗ml)

)
with ΛT,ml :=

∫ T

0
L(B>p∗ml(t))dt
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NUMERICAL EXPERIMENTS



Numerical experiments

We discuss three situations.

Situation 1: conservative dynamics in large time horizon. We are
able to compute multilevel and staircase controls for (1) by solving the
first optimal control problem considered. We also show the failure of
this approach in a short time horizon.

Situation 2: conservative dynamics in short time horizon. We are
able to compute multilevel and staircase controls for (1) by solving the
second optimal control problem considered.

Situation 3: general dynamics. We will consider a dynamics which
is neither conservative nor dissipative to illustrate that multilevel and
staircase controls can be computed by solving the second optimal
control problem considered.

In all these numerical experiments, we have used a standard gradient
descent method to carry out the minimization of the functionals.
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Conservative dynamics in large time

A =

(
0 1
−1 0

)
B =

(
0
1

)
x0 =

(
−1
1/2

)
T = 4

Control set

R =

{
− 1, 1

} Control set

R =

{
− 3

2
,− 1

2
,
3
4
,
3
2

}
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Conservative dynamics in large time
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(
0
1

)
x0 =

(
−1
1/2

)
T = 4

Control set

R =

{
− 1, 1

} Control set

R =

{
− 3

2
,− 1

2
,
3
4
,
3
2

}

48/58



Conservative dynamics in large time

A =

(
0 1
−1 0

)
B =

(
0
1

)
x0 =

(
−1
1/2

)
T = 4

Control set

R =

{
− 1, 1

} Control set

R =

{
− 3

2
,− 1

2
,
3
4
,
3
2

}

49/58



Conservative dynamics in short time
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General dynamics

{
x′(t) = x(t) + u(t), t ∈ (0,T)

x(0) = x0
(5)

The dynamics is neither conservative nor dissipative. Hence, we cannot
guarantee that the first optimization processwould be capable of generating
an effective multilevel and staircase control.
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General dynamics

In fact, a multilevel control u∗ generated through Jml would be such that

u∗(t) ≥ ρ1, for all t ∈ (0,T).

The corresponding solution of (5) would then satisfy x′(t) ≥ x(t) + ρ1 for all
t ∈ (0,T), i.e.

x(t) ≥ (x0 + ρ1)e
t − ρ1, for all t ∈ (0,T).

Since ρ1 < 0, this would imply that there can exist some time T > 0 such
that x(T) = 0 if and only if x0 < −ρ1. If, instead, x0 ≥ −ρ1, then

x(t) ≥ −ρ1 > 0, for all t ∈ (0,T).

Nevertheless, even if x0 < −ρ1, for this dynamics (5) we cannot guarantee
that the functional Jml is coercive. Therefore, the minimization of Jml may
not be successful.
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General dynamics

All these issues disappear when looking for multilevel and staircase controls
for (5) through the minimization of Jml. In fact, in this case we know that our
multilevel control u∗ would be such that

u∗(t) ≥ ΛT,mlρ1, for all t ∈ (0,T),

with

ΛT,ml =

∫ T

0
L(B>p̃∗ml(t))dt > 0

depending on the time horizon T and the optimal solution p∗T,ml.

During the optimization process, the intensity of the control is also
optimized so to guarantee the controllability of (5) for all x0 ∈ R and
T > 0.
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General dynamics

x0 = 1 ⇒ x(t) = et

R = {−1, 1} ⇒ u∗(t) ∈ {−ΛT,ml,ΛT,ml}
for a.e. t ∈ (0,T)
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OPEN PROBLEMS



Open problems

Minimal number of switching angles

In practical applications, to optimize the converters’ performance,
it is required to maintain the number of switches in the SHM signal
the lowest possible.

Characterization of the solvable set

It would be interesting to have a full characterization of the solvable
set for the SHMproblem, thus determining the entire range of Fourier
coefficients which can be reached by means of our approach.
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