Robust neural ODEs — a second order adjoint sensitivity
approach.

Tobias Wohrer

in collaboration with Enrique Zuazua

FAU Erlangen-Nurnberg
Department of Data Science

Chair

DYNAMICS, CONTROL
AND NUMERICS
FAU



Goal: Train ODE based neural networks, such as ResNets, that are robust with
respect to (certain) adversarial attacks.

Methods:
Optimize then discretize: Consider optimal control problem for continuous neural
ODE. Then view neural network training as discretized approximation.
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Part 1: Adversarial Attacks
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Adversarial Attack Examples

Adversarial attacks are the "viruses” of machine learning.

Figure 1: Manipulated stop signs lead to misclassification.
Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification.” "18.
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Adversarial Attack Examples
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Figure 2: FGSM attack on GoogleNet.
Goodfellow et al. "Explaining and Harnessing Adversarial Examples” "14.
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Adversarial Attack Examples: NLP

Spam email filter:

“Adding these magic words to original spam emails is fairly successful in evading
detection:

ferc, listbot, jhherbert, lokay, eyeforenergi, erisk, counterparti, ena, sitara, topica,
kal, calger, beenladen, aggi, clickathom, cdnow, wassup, cera, enrononlin, pjm,
kaminski”

Wang, Chenran, et al. "Crafting Adversarial Email Content against Machine Learning Based Spam
Email Detection.” '21
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Adversarial Attacks

Discussion:

- Adversarial attacks are input perturbations

- They highlight vulnerabilities of neural networks

- Missing robustness poses security threat

- Limits applications

- Daily life more assisted by machine learning = more potential for harm

Question: How can we defend against adversarial attacks?
l.e. how can we train robust neural networks?
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Overview

Part 1: Robust Optimal Control of neural ODEs

- Robustness as saddle-point problem
- Augmented training

- Gradients via the adjoint method
Part 2: Numerical Aspects

+ Memory cost

- Experiments
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Part 2: Robust Optimization of
Neural ODEs
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neural ODE (nODE)

x(t) = g(u(t), x(t)) = w(t)o(x(t)) + b(t), te(0,T],
x(0) = xo € RY.

- Xo is the input data, e.g. an image

- u(t) = [w(t), b(t)] € L?(0,T; R%) controls
- w(t) € R9*9 weight function
- b(t) € RY bias function

a(x) € (0,1) nonlinear activation function such as tanh(x)
* Xu(T)

Time discretization of (nODE) generates neural network. Later more on that.
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Optimization problem for loss function J(u, xo, y):

I E(x, yy~ul I(U: X0, Y)]

- U control parameter
- Xo input, y classification label distributed according to
- (generally unknown) data distribution .

- xy(T) solution to (NODE) with initial datum xo parameters u at final time T.
Typical choices for J:

- Square loss (regression): J(u,xo,Y) = [xu(T) —y|3, v € RY.
+ Cross-entropy loss (classification): Jeg (U, Xo,¥) = —(xu(T))y + log(3-/, €4()
wherey € {0,...,d} and (x,(T)), denotes the y-th coordinate of x,(T).
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Robust optimization

Defending against adversarial attacks:

Solve robust optimization problem

iNf By, y)~ul SUP J(U, X0 + 25, V)] (1)
. (&)<

- Attack specific norm ¢(¢), e.g. 4(¢§) = |¢|~
- & > 0 perturbation budget

Figure 3: from [Madry et
al. '19.]

Such saddle-point problems are challenging! No convex structure.

[Shaham et al. "18, Madry et al. '19]
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Augmented Training

Proposition 1 (Gradient regularization)

For fixed control u € L?(0, T; R%), the augmented loss function ansatz

Ji(X0) :=J(x0) +e  max (VyJ(Xo),V)
veRd ((v)<1

approximates the robust optimization problem (1) in linear order.
For ¢(v) = |v|p follows

Jq(X0) = J(x0) + €[ V) (X0) o+,

where q € [1,00] and g* is the Holder conjugate satisfying % + qi =1
[LeCun, Drucker '92; Trillos, Trillos '21]
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Proof:
Taylor expansion of robust optimization problem (1) leads to

inE(XOJ)Nﬂ[ sup J(u,xo +ev)]
2(v)<1

= INfE(xy)~uld(X0) + & SUP (Vx,J(X0), V) + R(Xo, U, V)e’]
g £(v)<T

~ imcIE(xo,y)rv,u[J(XO) +¢e sup <VX0J(XO)v V>]
& £(v)<1

E.g (V) = [V|eo <1 V¥ = sign(Vx,J(X0)) vields

SUp (Vi J(X0), V) = (Vo J (X0), V) = [Vixy J (X0) -
L(v)<1
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Lemma 1 (Adjoint equation of J)
Forv e RY n e [2(0,T;R%) holds

<VX0J(X0)7 V> = (p(0)7 V>7

(Vud(U), ) = /O (Dug(u(t), X(B)) p(), m(B)d,

where p(t) € R? solves the linear adjoint equation

p(t) = —Dxg(u(t),x(t))"p(t), telo,T),
p(T) = Vyn)d(xo).

Augmented loss function expressed as:

1 1
Jo(X0) = I0x0) + [Vio(X0)lg- = Jx0) +£Ip(0)l-, - 4 o =T
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Parameter Gradients

Jq(X0) = I(X0) + [VxeJ(X0)lg= = J(x0) +£|p(0)]g+, 7 + T 1.

The optimization of the model parameters u is usually realized via (stochastic)
gradient descent of the loss function.
— We want to compute V,7(xo).

We can express V,J(u) with adjoint equations of second order.
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Theorem 2 (Second order adjoint)
Let u € L?(0,T;R%) be fixed. We consider augmented loss
T (u) = Ixu(T) = yI5 + 1pu(0) 3

where p, is solution to the adjoint equation (2). Then,

.
(Vulpu(0),7) = —/O (s(8), Dacg(u(t), X(1))[0px(t), p(1)]
Duxg(u(t),x(1)) [n(t), p(B)])dlt,

- Dxxg(u,x) and Dyxg(u, x) denote the second order derivatives of
(U,X) — g(u,X) € R?
- s.and §,x(t) solve the ODE

{86(t) = Deg(u(t), x()o(1), te (0T, 3)

with initial data s(0) = —py(0) and §,x(0) = 0.
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Part 2: Numerical Aspects




ODE based neural networks

Time discretization of (nODE) generates neural network.

E.g.: Euler discretization (with step size 1) yields
residual neural network:

Xk = X"+ wha(xF) + b¥, ke {0,..., Niayers — 1},

X0 =xp € RY.

Very specific discretization:
#layers «» #function evaluation < #parameters

ODE based neural networks: Also higher order and variable step-size
discretizations of (nODE) can be considered. Better adapted to data and
dynamics.

Advantage: ODE based neural networks can increase “depth” without increasing
parameter load.
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Figure 1: Left: A Residual network defines a
discrete sequence of finite transformations.
Right: A ODE network defines a vector
field, which continuously transforms the state.
Both: Circles represent evaluation locations.

[Chen et al. 18]
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Problem 1: ODE Network with many evaluation points: = training process with
naive backpropagation (chain rule) has very high memory cost.

Problem 2: To evaluate our augmented loss function

J(u) = J(xo0) +€lpu(0)],
we need to
1. Solve nODE: xo — Xx(T).
2. Solve adjoint equation backwards: p(T) — p(0).

“Depth” essentially doubles
— Memory cost of naive chain-rule based “Double Backpropagation”.

Solution: Use adjoint method layer-by-layer to compute gradients of 7 (u).
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Classification example: Two-dimensional point clouds
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Classification of orange and blue data points.
Left: Training set. Right: Model prediction level sets
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robust training
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X2

I1 training
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Topological consideration
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Topological considerations
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Image Classification: MNIST
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Figure 4: | - |, Adversarial attacks: Xo = X + £5i8n(Vy,J(X0)).

Eps: 0.3
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Image Classification: MNIST

e | standard | robust training
01| 395% 96.86 %
0.2 82 % 9198 %
03| 319% 59.53 %

Architecture:
- 3 convolutional layers
- 6 ResNet layers: width = 64

- 1 Pooling, 1 Linear layer: From 64 channels to 10 channels for the 10 numbers
to be detected.

- Activation function tanh.

Training: Stochastic gradient descent with adjoint method with torchdiffeq
package.
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Summary: Robust ODE based neural networks

Adversarial attacks

- Lead to misclassification.

- Robustness can be formulated as robust optimal control problem.

Adversarial defence
- Augmented cost function of neural ODE with first order term.
- Compute gradients via adjoint method = continuous backpropagation.

- Careful implementation with regards to data topology.
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Thank you for your attention.
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