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Goal: Train ODE based neural networks, such as ResNets, that are robust with
respect to (certain) adversarial attacks.

Methods:
Optimize then discretize: Consider optimal control problem for continuous neural
ODE. Then view neural network training as discretized approximation.
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Part 1: Adversarial Attacks
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Adversarial Attack Examples

Adversarial attacks are the ”viruses” of machine learning.

Figure 1: Manipulated stop signs lead to misclassification.
Eykholt, Kevin, et al. ”Robust physical-world attacks on deep learning visual classification.” ’18.
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Adversarial Attack Examples

Figure 2: FGSM attack on GoogLeNet.
Goodfellow et al. ”Explaining and Harnessing Adversarial Examples” ’14.
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Adversarial Attack Examples: NLP

Spam email filter:

“Adding these magic words to original spam emails is fairly successful in evading
detection:

ferc, listbot, jhherbert, lokay, eyeforenergi, erisk, counterparti, ena, sitara, topica,
kal, calger, beenladen, aggi, clickathom, cdnow, wassup, cera, enrononlin, pjm,
kaminski ”

Wang, Chenran, et al. ”Crafting Adversarial Email Content against Machine Learning Based Spam

Email Detection.” ’21
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Adversarial Attacks

Discussion:

• Adversarial attacks are input perturbations
• They highlight vulnerabilities of neural networks
• Missing robustness poses security threat
• Limits applications
• Daily life more assisted by machine learning =⇒ more potential for harm

Question: How can we defend against adversarial attacks?
I.e. how can we train robust neural networks?
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Overview

Part 1: Robust Optimal Control of neural ODEs

• Robustness as saddle-point problem
• Augmented training
• Gradients via the adjoint method

Part 2: Numerical Aspects

• Memory cost
• Experiments
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Part 2: Robust Optimization of
Neural ODEs
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neural ODE (nODE)ẋ(t) = g(u(t), x(t)) = w(t)σ(x(t)) + b(t), t ∈ (0, T],

x(0) = x0 ∈ Rd.

• x0 is the input data, e.g. an image
• u(t) = [w(t),b(t)] ∈ L2(0, T;Rdu) controls

• w(t) ∈ Rd×d weight function
• b(t) ∈ Rd bias function

• σ(x) ∈ (0, 1) nonlinear activation function such as tanh(x)
• xu(T)

Time discretization of (nODE) generates neural network. Later more on that.
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Optimization problem for loss function J(u, x0, y):

inf
u
E(x0,y)∼µ[ J(u, x0, y)]

• u control parameter
• x0 input, y classification label distributed according to
• (generally unknown) data distribution µ.
• xu(T) solution to (nODE) with initial datum x0 parameters u at final time T .

Typical choices for J:

• Square loss (regression): J(u, x0, y) = |xu(T)− y|22, y ∈ Rd.
• Cross-entropy loss (classification): JCE(u, x0, y) = −(xu(T))y + log(

∑m
j=1 exj(T))

where y ∈ {0, . . . ,d} and (xu(T))y denotes the y-th coordinate of xu(T).
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Robust optimization

Defending against adversarial attacks:

Solve robust optimization problem

inf
u
E(x0,y)∼µ[ sup

`(ξ)≤1
J(u, x0 + εξ, y)] (1)

• Attack specific norm `(ξ), e.g. `(ξ) = |ξ|∞
• ε > 0 perturbation budget

Figure 3: from [Madry et
al. ’19.]

Such saddle-point problems are challenging! No convex structure.

[Shaham et al. ’18, Madry et al. ’19]
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Augmented Training

Proposition 1 (Gradient regularization)

For fixed control u ∈ L2(0, T;Rdu), the augmented loss function ansatz

J`(x0) := J(x0) + ε max
v∈Rd,`(v)≤1

〈∇x0J(x0), v〉

approximates the robust optimization problem (1) in linear order.
For `(v) = |v|p follows

Jq(x0) = J(x0) + ε|∇x0 J(x0)|q∗ ,

where q ∈ [1,∞] and q∗ is the Hölder conjugate satisfying 1
q +

1
q∗ = 1.

[LeCun, Drucker ’92; Trillos, Trillos ’21]
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Proof:
Taylor expansion of robust optimization problem (1) leads to

inf
u
E(x0,y)∼µ[ sup

`(v)≤1
J(u, x0 + εv)]

= inf
u
E(x0,y)∼µ[J(x0) + ε sup

`(v)≤1
〈∇x0J(x0), v〉+ R(x0,u, v)ε2]

≈ inf
u
E(x0,y)∼µ[J(x0) + ε sup

`(v)≤1
〈∇x0J(x0), v〉].

E.g. `(v) = |v|∞ ≤ 1: v∗ = sign(∇x0J(x0)) yields

sup
`(v)≤1

〈∇x0J(x0), v〉 = 〈∇x0J(x0), v∗〉 = |∇x0J(x0)|1.
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Lemma 1 (Adjoint equation of J)
For v ∈ Rd, η ∈ L2(0, T;Rdu) holds

〈∇x0J(x0), v〉 = 〈p(0), v〉,

〈∇uJ(u), η〉L2 =
∫ T

0
〈Dug(u(t), x(t))Tp(t), η(t)〉dt,

where p(t) ∈ Rd solves the linear adjoint equationṗ(t) = −Dxg(u(t), x(t))Tp(t), t ∈ [0, T),

p(T) = ∇x(T)J(x0).
(2)

Augmented loss function expressed as:

Jq(x0) = J(x0) + |∇x0 J(x0)|q∗ = J(x0) + ε|p(0)|q∗ ,
1
q
+

1
q∗

= 1.
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Parameter Gradients

Jq(x0) = J(x0) + |∇x0 J(x0)|q∗ = J(x0) + ε|p(0)|q∗ ,
1
q
+

1
q∗

= 1.

The optimization of the model parameters u is usually realized via (stochastic)
gradient descent of the loss function.
=⇒ We want to compute ∇uJ (x0).

We can express ∇uJ (u) with adjoint equations of second order.
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Theorem 2 (Second order adjoint)

Let u ∈ L2(0, T;Rdu) be fixed. We consider augmented loss

J (u) = |xu(T)− y|22 + |pu(0)|22

where pu is solution to the adjoint equation (2). Then,

〈∇u|pu(0)|2, η〉 = −
∫ T

0

〈
s(t),Dxxg(u(t), x(t))[δηx(t),p(t)]

Duxg(u(t), x(t))T [η(t),p(t)]
〉
dt,

• Dxxg(u, x) and Duxg(u, x) denote the second order derivatives of
(u, x) 7→ g(u, x) ∈ Rd

• s and δηx(t) solve the ODE{
d
dtφ(t) = Dxg(u(t), x(t))φ(t), t ∈ (0, T], (3)

with initial data s(0) = −pu(0) and δηx(0) = 0.
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Part 2: Numerical Aspects
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ODE based neural networks

Time discretization of (nODE) generates neural network.

E.g.: Euler discretization (with step size 1) yields
residual neural network:xk+1 = xk + wkσ(xk) + bk, k ∈ {0, . . . ,Nlayers − 1},

x0 = x0 ∈ Rd.
(4)

Very specific discretization:
#layers↔ #function evaluation↔ #parameters

ODE based neural networks: Also higher order and variable step-size
discretizations of (nODE) can be considered. Better adapted to data and
dynamics.

Advantage: ODE based neural networks can increase “depth” without increasing
parameter load.
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[Chen et al. ’18]
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Memory cost

Problem 1: ODE Network with many evaluation points: =⇒ training process with
naive backpropagation (chain rule) has very high memory cost.

Problem 2: To evaluate our augmented loss function

J (u) = J(x0) + ε|pu(0)|,

we need to
1. Solve nODE: x0 7→ x(T).
2. Solve adjoint equation backwards: p(T) 7→ p(0).

“Depth” essentially doubles
=⇒ Memory cost of naive chain-rule based “Double Backpropagation”.

Solution: Use adjoint method layer-by-layer to compute gradients of J (u).
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Classification example: Two-dimensional point clouds

Classification of orange and blue data points.
Left: Training set. Right: Model prediction level sets
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Attacks given via perturbation x0 + ε∇x0J(x0)
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Topological considerations: movie
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Topological considerations
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Image Classification: MNIST

Figure 4: | · |∞ Adversarial attacks: x̃0 = x0 + ε sign(∇x0 J(x0)).
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Image Classification: MNIST

ε standard robust training
0.1 39.5 % 96.86 %
0.2 8.2 % 91.98 %
0.3 3.19 % 59.53 %

Architecture:
• 3 convolutional layers
• 6 ResNet layers: width = 64
• 1 Pooling, 1 Linear layer: From 64 channels to 10 channels for the 10 numbers
to be detected.

• Activation function tanh.

Training: Stochastic gradient descent with adjoint method with torchdiffeq
package.
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Summary: Robust ODE based neural networks

Adversarial attacks

• Lead to misclassification.
• Robustness can be formulated as robust optimal control problem.

Adversarial defence
• Augmented cost function of neural ODE with first order term.
• Compute gradients via adjoint method =⇒ continuous backpropagation.
• Careful implementation with regards to data topology.
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Thank you for your attention.
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