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The game of Tetris

How can we survive as long as we can in the game of Tetris? Forever?

Figure: [Wikipedia; Tetris; a typical tetris screen]
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The game of Tetris

For simplicity, we ignore ‘operation’ step of Tetris.

⇒ ⇒
Figure: Time-discrete version of Tetris, t = 0, 1, 2.

Without consideration of falling speed, we just choose the place of the
next block. Then, Tetris becomes time-discrete and infinite horizon
optimal control problem.
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Formulation of optimal control problem(OCP)

Optimal control problem: at a time instance, we have (1) stacked
blocks in the screen and (2) the next block(shape) above. Our control is
to choose a place for the next block.

State: a state i includes the stacked blocks (cardinality nearly
2width×height) and the next block (all 7 shapes).

Control: a control µ maps a state i to the next stacked blocks. The
shape is randomly given, therefore, µ(i) is a set of 7 states.

Next states: The state j(t, i , µ, ω) after time t with control µ while the
random element ω determines the next shapes. The set of possible
i(t, µ, ω) is denoted by N(t, i , µ).
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Reward function for OCP

The running reward(cost) can be chosen as follows; Let i represent a
state containing stacked blocks and the next block. Then,

r(i) =

{
1 if i is not at the terminal state (end of game),
0 if i is in the terminal.

In order to make r integrable along time, we multiply α ∈ (0, 1) for the
next step (due to infinite-horizon).

Reward(i , µ) = E

[ ∞∑
t=0

αtr(j(t, i , µ))

]
.

Then, the optimal control µ∗ want to survive as long as we can.
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Value and its control strategy

How can we compute the optimal control?

Dynamic Programming considers a value function V that maps a state
i to a real number V (i).

V (i) gets 0 if i is the terminal (Boundary Condition), and V (i) becomes
bigger if it is a ‘good’ state to survive.

Then, the strategy µ corresponds V is the maximizer of

TV (i) := max
µ

[r(i) + αEV (j(1, i , µ))] .

The operator T is the Bellman operator, and µ is called the 1-step
lookahead (control) of the value V .
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Bellman operators and the optimal value

Since there are 7 shapes of blocks, the expectation is on the 7 shapes;

Figure: 7 shapes of Tetris

TV (i) = max
µ

[
1+

α

7

∑
j∈N(1,i,µ)

V (j)
]
.

Tetris is a typical example of a ’survival game’ since we can just count
time steps for scores and in every step there is randomness on shapes.
(We may consider snake game, pacman, or flappy birds for comparison.)
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lookahead and the optimal reward

How we can compute the optimal value function?

For example, the 2-step lookahead is the maximizer of

T 2V (i) = max
µ

[r(i) + αE [r(j(1, i , µ)) + αEV (j(2, i , µ))]]

= max
µ

E
[
r(j(0, i , µ)) + αr(j(1, i , µ)) + α2V (j(2, i , µ))

]
which searches the values at states after two discrete time steps. `-step
lookahead follows

T `V (i) = max
µ

E

[
`−1∑
t=0

αtr(j(t, i , µ)) + α`V (j(`, i , µ))

]
.

As `→∞, it will converge to the optimal reward function

T `V (i)→ Reward(i) =max
µ

E

[ ∞∑
t=0

αtr(j(t, i , µ))

]
with the exponential rate (at least) α in `∞-norm.
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The reward of a given control

Computing T `V (`→∞) to find V ∗ is called the value iteration(VI).

Note that, for each µ, we may define T `
µV and it also converges to the

unique equilibrium Vµ, the expected reward using µ (Performance):

T `
µV (i) = E

[
`−1∑
t=0

αtr(j(t, i , µ)) + α`V (j(`, i , µ))

]
→ Reward(i , µ) = Vµ(i).

This is called the policy evaluation.

Performance estimate [D. P. Bertsekas, Book, 2019]

Let µ be the `-step lookahead of a value V . Then, the policy evaluation
Vµ from the strategy µ satisfies

‖Vµ − V ∗‖∞ ≤
2α`

1− α
‖V − V ∗‖∞.
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The meaning of value

What exactly is the meaning of the value Vµ(i)?
Case 1; let a control µ always make Tetris terminates after t step.
Then, the total reward becomes

Vµ(i) = 1+ α+ α2 + · · ·+ αt−1 =
1− αt

1− α
.

If the optimal control could keep Tetris forever, then,

Vµ(i)− V ∗(i) = Vµ(i)−
1

1− α
= − αt

1− α
.

In general, we will get

Vµ(i)− V ∗(i) = − ατ

1− α
,

where τ is an weighted expected survival time with the strategy µ.
Therefore, the performance estimate says that

τ ≥ `+ Constant.
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Numerical simulation 1; standard Tetris

We never see this performance in practice.

Consider Tetris with the standard scale; width 10 and height 12. The
value function is set to be (the remaining height - number of holes).

Then, the survival time τ(`) from `-step lookahead scores

τ(1) = 120, τ(2) = 370, τ(3) = 1070, and τ(4) = 2810.

(averaged over 20 simulations)

The score grows, not just linearly, but may exponentially.
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Numerical simulation 2; small Tetris

If the scale gets smaller, then the cardinality of states becomes few
enough to compute the optimal value. For 4 ∗ 5 Tetris, the cardinality
is less than 7× 220 ∼ 1MB.

Figure: Tetris with width 4 and height 5

Here a 1-step lookahead control can survive around 20 time steps in
expectation.
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Numerical simulations; small Tetris

Figure: log(Vµ(i)− V ∗(i)) along ` (blue), compared with α decay (red).

As ` grows, the ratio seems much stiff, at least (α/2). This shows that,
in score,

τ ' 22`+ Constant.
In the remaining of the talk, we want to explain this (α/2) factor.
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The performance estimates of VI

From now on, we introduce the results of [Kim-K.-Lee-Min, preprint]:

The performance estimate follows

‖Vµ − V ∗‖∞ ≤
α`

1− α
‖V − V ∗‖∞.

The proof is elementary, and here we reorganizing it with Bellman
operators,

TµV (i) := 1+
α

7

∑
j∈N(i,µ)

V (j), TV (i) := 1+
α

7
max
u

 ∑
j∈N(i,u)

V (j)

 ,

and its zero-reward versions,

LµV (i) := 0+
α

7

∑
j∈N(i,µ)

1
7
V (j), LV (i) := 0+

α

7
max
u

 ∑
j∈N(i,u)

1
7
V (j)

 .
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The performance equality

Theorem 1; operator expression of performance

Given a value function Ṽ of V ∗, let µ be the `-step lookahead policy
generated by Ṽ , i.e., TµT `−1Ṽ = T `Ṽ . Then, we have

Vµ − V ∗ =(I+Lµ+L2
µ+· · · )

[(
T `V ∗ − T `Ṽ

)
+ Lµ

(
T `−1Ṽ − T `−1V ∗

)]
.

Given this result, since all the operators are contraction with ratio α,

‖Vµ − V ∗‖∞
≤ (1+ α+ α2 + · · · )(‖T `Ṽ − T `V ∗‖∞ + α · ‖T `−1Ṽ − T `−1V ∗‖∞)

≤ (1+ α+ α2 + · · · )(α`‖Ṽ − V ∗‖∞ + α · α`−1‖Ṽ − V ∗‖∞)

≤ 2α`

1− α
‖Ṽ − V ∗‖∞.
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The performance equality

Theorem 2; scaling of values in performance

Suppose that the running reward r(i) is constant. Given a state i , a value
function Ṽ , and a series of constants am > 0, we have

(Vµ − V ∗)(i) =
∞∑

m=0

Lmµ

(
T `V ∗ − T `(amṼ )

)
(i)

+
∞∑

m=1

Lmµ

(
T `−1V ∗ − T `−1(am−1Ṽ )

)
(i).

Moreover, each term is affine to a1, a2, · · · .

This implies that, with carefully determined am > 0, we have

|(Vµ − V ∗)(i)| =
∞∑

m=0

∣∣∣Lmµ (T `V ∗ − T `(amṼ ))(i)
∣∣∣ .

Therefore we only need to analyze |T `V ∗(j)− T `(amṼ )(j)|.
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Proof of the operator expression

The proof needs two ingredients. One is the convergence result,

lim
m→∞

Tm
µ V = Vµ for any V .

The other is on the linear Bellman operators,

TµV1 − TµV2 = LµV1 − LµV2 = Lµ(V1 − V2).

Therefore, we have

Vµ − V ∗ =
∞∑

m=1

(Tm
µ V ∗ − Tm−1

µ V ∗)

=
∞∑

m=1

(Tm
µ V ∗ − Tm

µ T `−1Ṽ ) +
∞∑

m=1

(Tm−1
µ T `Ṽ − Tm−1

µ V ∗)

=
∞∑

m=1

Lmµ (T
`−1V ∗ − T `−1Ṽ ) +

∞∑
m=1

Lm−1
µ (T `Ṽ − T `V ∗)
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Proof of the scaling values

The proof needs two ingredients. One is the control conservation (from
the constant reward assumption),

TµṼ = TṼ ⇔ Tµ(aṼ ) = T (aṼ )

The other is the affine properties of Bellman operators,

LkµT
`(aV )− LkµL

`(aV ) = Constant for any a > 0.

It also guarantees that every term is affine on a. Therefore, we have

(Vµ − V ∗)(i) =
∞∑

m=0

Lmµ

(
T `V ∗ − T `(amṼ )

)
(i)

+
∞∑

m=0

Lmµ Lµ
(
T `−1(amṼ )− T `−1V ∗

)
(i).
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Effects of lookaheads

The performance equality now becomes

|(Vµ − V ∗)(i)| =
∞∑

m=0

∣∣∣Lmµ (T `V ∗ − T `(amṼ ))(i)
∣∣∣ .

In a rough estimation, we have∥∥∥T `V ∗ − T `Ṽ
∥∥∥
∞

‖V ∗ − Ṽ ‖∞
≤ α`.

From a viewpoint of Hamilton-Jacobi-Bellman equation, it corresponds to
a kind of ‘local’ contraction rate near the initial state (in spatial position)
and near the optimal value (in solution function space).
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Argument of choosing maxima

Suppose that our problem is deterministic (no random blocks).

Then, the situation becomes simple; for two value functions V1 and V2
defined on a set N, we need to estimate

|T `V1(i0)− T `V2(i0)|
maxi`∈N |V1(i`)− V2(i`)|

=
α`|maxi`∈N V1(i`)−maxi`∈N V2(i`)|

maxi`∈N |V1(i`)− V2(i`)|
,

which is a simple maximum argument among |N| elements.

When this ratio becomes α`? From general values V1 and V2, it occurs
when both V1 and V2 have their maxima at the same point!

Note also that if they always have the same maximizers, then two
corresponding controls are idential, and it implies that V1 = V2.
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Choosing maxima - closely corellated values

For example, suppose that V1 is V ∗ and V2 follows V ∗ + ε where
ε ∼ U[0, σ] is a small uniform error.

The ratio now becomes
α`|maxi`∈N V ∗(i`)−maxi`∈N(V

∗ + ε)(i`)|
maxi`∈N ‖ε(i`)‖

,

From simulations, we can get this is around from 0.5 to 0.8.

Figure: Left: with E ∼ U[0, 0.01], Right: with E ∼ U[0, 0.1], drawn over |N|.
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Lookahead is a critical gain for performance

The maximum and the averaging arguments exclusively affects the ratio.
For large `, T `Ṽ and V ∗ are closely correlated; The performance
improves around α/2, and it fits the data.

Numerical simulations; [Kim-K.-Lee-Min, preprint]

Consider the small Tetris game with width 4 and height 5. Suppose that
the initial value function Ṽ follows V ∗ + ε where ε ∼ U[0, 0.01].
Then, the convergence ratio of T `(aṼ )(i0) to V ∗(i0) becomes (α/2) in
expectation, for proper a > 0 on each i0. The expectation is over Ṽ .

Note: the convergence of values and of controls are different problems.
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Simulation revisited

Figure: Graph shows log(Vµ(i)− V ∗(i)) along ` (blue), compared with α decay
(red).

We can check that with small ` the decay is nearly α/5 and for large ` it
becomes α/2.
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Summary and remarks

Summary
Value iteration near good initial state and value exceeds the
performance estimate which uses `∞-norm.

Remark
The main point is on the local contraction ratio of the Bellman
operator, near the initial state, near the optimal value.

Unfortunately, there seems not many results on this, even for
Hamilton-Jacobi-Bellman equation with infinite-horizon.

THANK YOU FOR YOUR ATTENTION.
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