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• Applications in Power-Electronics require

accurate simulation of the underlying Physics in 
order to optimize Devices or Processes

• accurate numerical Schemes and Softwares 

(FEM, FD, etc.) usually exist but can be:                                                                  

→ computationally demanding
→ even more demanding at scale for

optimization purposes with many degrees of

freedom

• traditional ML-Approaches:                                    
→ quick inference times on trained Models           

→ limited possibility to include physics

→ „black-box“

Optimization of Mask Layouts in EUV-Lithography

(Accurate Imaging)

Ferrit-Topology magnetic flux

Optimization of Ferrit Cores inside Converter

(Reduction of Losses)

[1]
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▪ notion first introduced by Raissi et al. in 2017 [4]

▪ Conceptual Difference in how Neural Networks are trained:

▪ classical Neural Network:

▪ „data-supervised Learning“

▪ e.g.: Input-Image → Output-Image

▪ Loss-Function: e.g. MSE over all pixels

▪ Physics-Informed Neural Network:

▪ „physics-supervised“ Learning

▪ e.g.: (x, y, t) → u(x,y,t) → (du/dx, du/dy, du/dt, …)

▪ Loss-Function: Residuals on PDE, BCs, ICs
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▪ Loss-Function: Residuals on PDE, BCs, ICs

▪ Benefits

▪ no data required → explicit supervision by Physics

▪ implicit meshing → adaptive strategies can be applied

▪ generalization → additional Inputs e.g. for different Geometries 

▪ Increasing Amounts of Publications and (Open-Source) Software [5]

Blood flow simulation in an Aneurysm [7]

Temperature Simulation in Fluids & Solids [7]

Simulation of aircraft cabin panel stress [7]

Parametrization of Heat Sink Geometries [6]



A Use-Case from Power-Electronics
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Topology-Optimization of a Power Converter

Goals

1. Approximation of magnetic Fields by solving quasi-static Maxwell‘s Equation

2. Calculation of relevant Quantities like Inductivities and Coupling k

3. Optimization of Topology with respect to those Quantities

© Fraunhofer IISB



Chapter 02

—
Modeling

29.08.2022Seite 10 © Fraunhofer IISB



Modeling

29.08.2022Seite 11

Quasi-static Maxwell Equation
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▪ K.Angermeier: „Topology-Optimization of inductive Components“ [8]
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Quasi-static Maxwell Equation
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▪ K.Angermeier: „Topology-Optimization of inductive Components“ [8]

▪ no free electric charges/currents

▪ Existence of magnetic Vector Potential A, 

s.t. 

▪ Coulomb Gauging for Uniqueness of A

▪ rotational symmetry, current J only in z-

direction
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Quasi-static Maxwell Equation
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▪ time-dependence on J and A

▪ K.Angermeier: „Topology-Optimization of inductive Components“ [8]

▪ no free electric charges/currents

▪ Existence of magnetic Vector Potential A, 

s.t. 
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▪ rotational symmetry, current J only in z-

direction



Modeling
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Boundary Conditions
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▪ anti-symmetric Mirroring of source currents by enforcing

zero magnetic flux across Boundary, cf. Harlander, 2002 [9]: 

▪ Biro, Preis, 1989 [10]: equivalence to homogeneous

dirichlet conditions on magnetic Vector Potential A
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Interface Conditions
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▪ For L2-Regularity, we require continuity across interfaces [11]:

▪ normal component of magnetic flux → B1∙n = B2∙n
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Interface Conditions
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▪ For L2-Regularity, we require continuity across interfaces [11]:

▪ normal component of magnetic flux → B1∙n = B2∙n

▪ normal component of current → J1∙n = J2∙n 

▪ tangential component of magnetic field intensity → H1∙t = H2∙t 
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Summary
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Quasi-static Maxwell-Equation



Modeling
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Main Challenges 

General Scaling and Stability of PDE

Nonlinear Material Properties at Interfaces between Air & Ferrit

Parametrization of Topology

Generalizable PINN-Training including geometry-specific Parameters

1

2

3

4
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Non-Dimensionalization
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▪ Main Issues (presumably):

▪ numerically small material parameters

▪ permeability jumps by a factor of 2000 across 

interfaces

▪ Beltran-Pulido et. al, 2022 [12]

▪ „… help to alleviate the effects of sharp changes of 

material properties across interfaces between 

materials”

Property Ferrit Air

Permeability μ [H/m] 2.704e-3 1.255e-6

Conductivity σ [1/(Ω*m)] 5.8e-7 0.0
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Non-Dimensionalization
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▪ introducing rescaled, non-dimensionalized variables and parameters: 
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Non-Dimensionalization
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▪ introducing rescaled, non-dimensionalized variables and parameters: 

▪ choice of constants, cf. [12], s.t.:
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Non-Dimensionalization
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▪ (so far only) empirical evidence that even really simple

use-cases behave a lot more stable in the non-

dimensionalized setting



Chapter 03

—
Implementation

29.08.2022Seite 24 © Fraunhofer IISB



Implementation
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PINN-Frameworks
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▪ technical simplicity of the approach:

▪ many open-source implementations available:

▪ stand-alone Code for highly specific Problems

▪ more general Frameworks with active development and maintenance

▪ Nvidia Modulus [6]:

▪ formerly known as SimNet™ [13]

▪ more advanced, professionally maintained

▪ more demanding/difficult to setup, especially in HPC-Environments

▪ DeepXDE [14]:

▪ Python-based Framework

▪ support for all common Machine-Learning Libraries (TensorFlow, PyTorch, …) 

▪ active online-community with many Publications connected to it

→ currently Framework of Choice for our work:

→ introduction of several Use-Cases to reflect different Complexity-Aspects

DeepXDE-Flowchart[14]
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Use-Cases & Reference Solutions
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▪ a2:

▪ single coil

▪ surronded by

air/ferrit

▪ b2:

▪ two coils

▪ surrounded by

air/ferrit

▪ a1:

▪ single coil

▪ surrounded by ferrit

▪ b1:

▪ two coils

▪ surrounded by ferrit



Implementation
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Reference Solutions
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FEMM-Simulation

LUA

CSV-

Format

magnetic Vector 

Potential A

magnetic Field 

Intensity B

▪ open-source Software FEMM: Finite-Element-Method Magnetics [15]
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Reference Solutions
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Need for Reference Solutions in Practice  

Losses:

▪ numerically depend on weights

▪ might be misbalanced and misleading

▪ evaluation via relative L2-Error more helpful, e.g. to

determine good Hyperparameters

Train-Loss mean rel. L2-Error
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PINNs in Practice
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(Adaptive) Loss-Weighting
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▪ Different Types and Numbers of Loss-Terms depending on Problem Formulation

▪ PDE-Loss(es)

▪ Loss for PDE-Residual

▪ Loss for B = rot(A)

▪ Boundary Condition Losses

▪ Dirichlet-Type Conditions can be enforced directly via Network-Structure

▪ all other Types lead to additional Loss-Terms

▪ Interface Condition Losses

▪ additional Terms for any Interfaces 

▪ amount increasing with complexity of topology

▪ Mathematically Advanced Strategies exist based on:

▪ Neural Tangent Kernel [16] → Spectral Bias of Neural Networks

▪ augmented Lagrangian Method [17]→ adaptive Imitation of Lagrange-Multipliers



PINNs in Practice

29.08.2022Seite 31

(Adaptive) Loss-Weighting
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Example: Weighting of Interface Condition Loss

Interface Condition-Loss non-zero at very few training points

→ very small averaged loss per default

→ no incentive to reduce the IC-Loss ahead of other loss-terms

▪ loss weights: [   1,             1,                1,                1,             1,               1,            100] 

▪ loss weights: [1,               1,                 1,        100000,          1,            1,             100]

IC-Residual  Output



PINNs in Practice
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Adaptive Sampling
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▪ uniform sampling does not resolve the most dynamic areas sufficiently:

▪ interfaces where material properties change

▪ conductive parts of the material

▪ Residual-based adaptive Refinement (RAR)

▪ based on the highest Residuals (PDE, BC, IC,..) new points in the domain

are selected for Training 

▪ leads to new Hyperparameters

▪ how many points to add?

▪ at which point during training should this be done?

▪ how often and how long (# epochs) should a Refinement-Step be

done?
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Intermediate Results
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Use-Case a1
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▪ early Trials without Interface Conditions:

▪ Residual-based Adaptive Refinement

▪ To be continued…



▪ early Trials without Interface Conditions:

▪ Residual-based Adaptive Refinement

▪ To be continued…

Intermediate Results

29.08.2022Seite 35

Use-Case b1

© Fraunhofer IISB



Intermediate Results
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Effect of Interface Conditions
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▪ without Interface Conditions

▪ with Interface Conditions
▪ Use-Case & Reference
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▪ Implementation & Evaluation of more advanced PINN-Specific Methods

▪ Augmented Lagrangian Method for Loss-Balancing

▪ Good Strategies for adaptive Sampling

▪ Tuning of Hyperparameters:

▪ choice of optimizer (ADAM, L-BFGS, 

▪ activation functions, learning rate(-decay)

▪ neural network size and structure

▪ Parameter related to training schemes → Residual-based Refinement, Lagrange-Method

▪ …there are many!

▪ Parametrization of Topologies→ Generalization of PINN for arbitrary Topologies

▪ Further Read → Recent Survey on PINNs for Scientific Machine Learning [18]
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