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Introduction Motivations

Homogenization Theory

Composite materials are characterized by the fact that they contain two or more finely
mixed material.

They have in general a ”better”behavior than the average behavior of their individual
material.

We can analyze the composite materials in two scales

Microscopic (Describing the heterogeneities)

Macroscopic (Describing the global behavior of the composite)

From the macroscopic point of view, the composite looks like a
”homogeneous”material.
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Introduction Motivations

Example: Temperature of a composite material

Consider the heterogeneous material
Ω = Ω1 ∪ Ω2

Also, consider u(x) the temperature of Ω
with define{
−div(a(x)∇u) = f (x), Ω = Ω1 ∩ Ω2,

u = 0 ∂Ω.

with

a(x) =

{
a1, if x ∈ Ω1

a2, if x ∈ Ω2

Here a1 and a2 are the thermal conductivity of Ω1 and Ω2 respectively.
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Introduction Motivations

Example: Temperature of a composite material

Since we are interested in the case were the material are finely mixed, we can consider
the equation {

−div
(
a
(
x
ε

)
∇uε

)
= f (x), Ω,

uε = 0 ∂Ω.

Here a(·) can be a periodic function.

Figura: The function sin(·) approximate the periodic piecewise constant function.
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Introduction Motivations

Example: Temperature of a composite material

Figura: If the material are more mixed, we can increase the denominator of the sin(·).
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Introduction Motivations

Example: Temperature of a composite material

How does uε behave when ε→ 0?

If we consider a periodic function a(x/ε) ∈ Lp(R) with period I , we have that

a(x/ε)→M(a) :=
1

|I |

∫
I
a(y)dy , weakly in Lp

when ε→ 0. Then a natural candidate for uε when ε→ 0 could be uM the solution of{
−div(M(a)∇uM) = f (x), Ω,

uM = 0 ∂Ω.

However, this analysis is wrong!
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Introduction Motivations

Example: Temperature of a composite material

Theorem (Bensoussan, Lions and Papanicolaou [1978])

Assume that a(·) is an elliptic and periodic function. Consider the homogenized system{
−div

((
M(a−1)

)−1∇uH
)

= f (x), Ω,

uH = 0 ∂Ω.

The we have that

uε → uH weakly in H1
0 (Ω).

In general
(
M(a−1)

)−1 6=M(a).
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Introduction Highly oscillatory heat equation

Problem Setting

Let us consider 
y εt − Div(a( xε )∇y ε) = χωf

ε (x , t) ∈ Ω× (0,T ),

y ε(x , t) = 0 (x , t) ∈ ∂Ω× (0,T ),

y ε(x , 0) = y0 x ∈ Ω,

with initial condition y0 ∈ L2(Ω) and the control f ε ∈ L2(0,T ; Ω) for each ε. Also
ω ⊂ Ω is a nonempty set. We assume that the function a(·) satisfy the elliptic condition

0 < a0 ≤ a(x) ≤ a1 <∞ a.e. in Rn.

Then the equation admits a unique solution y ε in the class W (0,T ) for each ε > 0
(see Lions, J. Optimal control of systems governed by partial differential equations.).
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Introduction Highly oscillatory heat equation

Uniform null Controllability

In addition, if we assume that a ∈ C 1(Rn) has uniformly bounded Lipschitz constant

‖Da(x)‖L∞(Rn) ≤ a2,

by the classical Carleman estimation developed in

Fursikov, A. & Imanuvilov, O. Controllability of evolution equations (1996).

Seoul National University, Research Institute of Mathematics, Global Analysis Research Center,
Seoul.

We can ensure that the heat equation is uniform null controllable.
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Introduction Highly oscillatory heat equation

Uniform null controllability

Theorem (Uniform null controllability)

Assume that a ∈ C 1(Rn) is an elliptic function with uniformly bounded Lipschitz
constant. Let T > 0. Then for any y0 ∈ L2(Ω) and ε > 0, the solution highly
oscillation heat equation satisfy the null controllability property. That is, there exists a
control f ε0 ∈ L2(0,T ; Ω) such that

y ε(x ,T ) = 0, ∀x ∈ Ω.

Furthermore, the control satisfy

‖f ε0 ‖L2(0,T ;Ω) ≤ C‖y0‖L2(Ω),

for every ε, with a constant C > 0 independent of ε.
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Introduction Highly oscillatory heat equation

Uniform null controllability

In the one dimensional case (Ω ⊂ R), we can relax the hypotheses under a(·). The
later theorem still holds only assuming that a ∈ L∞(R) is bounded.

The uniform null controllability going to be a main ingredient in order to conclude
the uniform turnpike property.
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Uniform Turnpike property Optimal control problem
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Uniform Turnpike property Optimal control problem

Evolutive control problem

We are interested in analyze this problem in the context of homogenization, consider
the following optimal control problem

ḿın
f ε∈L2(0,T ;Ω)

{
JTε (f ε) =

1

2

∫ T

0
‖f ε(·, t)‖2

L2(Ω)dt + ‖y ε(·, t)− yd(·)‖2
L2(Ω)dt

}
,

where yd ∈ L2(Ω) is a given target, and y ε solution of the heat equation.
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Uniform Turnpike property Optimal control problem

Stationary optimal control

In order to analyze the turnpike property consider the optima control problem time
independent

ḿın
f ε∈L2(Ω)

{
Jsε (f ε) =

1

2

(
‖f ε(·)‖2

L2(Ω) + ‖y(·)− yd(·)‖2
L2(Ω)

)}
.

Here yd ∈ L2(Ω) is the same target as in the previous optimization problem, and y
satisfy the elliptic equation{

−Div(a( xε )∇y) = χωf x ∈ Ω,

y(x) = 0 x ∈ ∂Ω.

which has a unique solution y ∈ H1
0 (Ω).
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Uniform Turnpike property Optimal control problem

Classical results

The evolutive and stationary problems admits a unique solution by virtue of the direct
method in the calculus of variations. Let us call this optimal variables as (y ε, f ε) and
(y ε, f

ε
) respectively.

Let us begin by introducing the adjoint states, which allows us to characterize the
optimal control of the problems.

Lemma (Adjoint stationary state)

The optimal control f
ε

is characterized by f
ε

= −χωψ
ε

with ψ
ε

solution of{
−Div(a( xε )∇ψε) = y ε − yd x ∈ Ω,

ψ
ε
(x) = 0 x ∈ ∂Ω,

where y ε is the optimal state associate to f
ε
.
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Uniform Turnpike property Optimal control problem

Classical results

Lemma (Adjoint evolutive state)

The optimal control f ε can be characterized by the identity f ε = −χωψε, where ψε

satisfy 
−ψεt − Div(a( xε )∇ψε) = y ε − yd (x , t) ∈ Ω× (0,T ),

ψε(x , t) = 0 (x , t) ∈ ∂Ω× (0,T ),

ψε(x ,T ) = 0 x ∈ Ω,

with y ε the optimal state associate to f ε.
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Uniform Turnpike property Optimal control problem

Our goal

We aim to prove the exponential turnpike property with uniform constant. That is
prove the inequality

‖y ε(·, t)− y ε(·)‖L2(Ω) + ‖f ε(·, t)− f
ε
(·)‖L2(Ω) ≤ C (e−µt + e−µ(T−t)),

for every t ∈ (0,T ), where C and µ are two positive constants independent of T and ε.
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Uniform Turnpike property Main Theorems of the work

Integral Turnpike Property

Theorem:

Assume that a ∈ C 1(Rn) is a function satisfy the elliptic condition and has uniformly
bounded Lipschitz constant. Consider the optimal pairs (y ε, f ε) and (y ε, f

ε
). Then we

have ∥∥∥∥ 1

T

∫ T

0
y ε(·, t)dt − y ε(·)

∥∥∥∥
L2(Ω)

+

∥∥∥∥ 1

T

∫ T

0
f ε(·, t)dt − f

ε
(·)
∥∥∥∥
L2(Ω)

≤ C

T
,

with C a positive constant independent of T and ε.

Proof Idea: Use energy estimations.
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Uniform Turnpike property Main Theorems of the work

Exponential Turnpike Property

Theorem (Exponential turnpike property)[M.H, E.Zuazua]

Assume that a ∈ C 1(Rn) is a function satisfy the elliptic condition and has uniformly
bounded Lipschitz constant. Let us consider the optimal pairs (y ε, f ε) and (y ε, f

ε
).

Then there exist two constants C > 0 and µ > 0 independent of T and ε such that

‖y ε(·, t)− y ε(·)‖L2(Ω) + ‖f ε(·, t)− f
ε
(·)‖L2(Ω) ≤ C (e−µt + e−µ(T−t)),

for every t ∈ (0,T ).

Author: Mart́ın Hernández Salinas. Uniform Turnpike Property and Singular Limits



Uniform Turnpike property Main Theorems of the work

Proof Sketch:

Porretta, A. & Zuazua, E.

Long time versus steady state optimal control (2013).

SIAM J. Control Optim..

The proof is based on a decoupling strategy, for which is necessary to introduce Riccati
operators. The main step is prove the following proposition

Proposition

Denote by Eε(t) and Ê ε, the evolutive and stationary Riccati operators. Then there
exist two positive constant µ and C independent of T and ε such that

‖Eε(t)− Ê ε‖L(L2(Ω)) ≤ Ce−µt ,

for any t > 0.

To obtain uniform constant above, is essential the uniform null controllability.
Author: Mart́ın Hernández Salinas. Uniform Turnpike Property and Singular Limits
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Uniform Turnpike property Singular limit
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Uniform Turnpike property Singular limit

Singular Limit of the Optimal Control Problems

We are interested in address the question if we can pass the limit in the exponential
turnpike inequality. Consider the homogenized equation (Evolutive and stationary)

yt − Div(A∇y) = f (x , t) ∈ Ω× (0,T ),

y(x , t) = 0 (x , t) ∈ ∂Ω× (0,T ),

y(x) = y0(x) x ∈ Ω,

,

{
−Div(A∇y) = f x ∈ Ω,

y(x) = 0 x ∈ ∂Ω.

Let us denote by (y , f ) and (y , f ) the optimal variables of the evolutive and stationary
problem, subject to the previous equation (respectively).
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Singular Limit of the Optimal Control Problems

Then we are interested in prove that

‖y ε(·, t)− y ε(·)‖L2(Ω) + ‖f ε(·, t)−f ε(·)‖L2(Ω)

→ ‖y(·, t)− y(·)‖L2(Ω) + ‖f (·, t)− f (·)‖L2(Ω)

when ε→ 0.
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Singular Limit of the Optimal Control Problems

Theorem (Brahim-Otsmane, Francfort, Murat.)[1992]

Let us consider in the previous equation, and sequence of controls f ε ∈ L2(0,T ; Ω).
Then for y the solution of{

ut − div
((
M(a−1)

)−1∇u
)

= χωf
ε(x), Ω,

u = 0 ∂Ω.

we have
1. If f ε weakly converges in L2(0,T ; Ω) to f , the solutions uε satisfy

uε ⇀ u weakly-* in L∞(0,T ; L2(Ω)) as ε→ 0.

2. If f ε strongly converges in L2(0,T ; Ω) to f , the solutions uε satisfy

uε → u strongly in C ([0,T ]; L2(Ω)) as ε→ 0.
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Singular Limit of the Optimal Control Problems

Lemma

Let us consider (y , f ) and (y , f ) the optimal pairs of the optimization problems,
subject to the homogenized equation respectively. Then we have that

f ε → f strongly in L2(0,T ; Ω), and y ε → y strongly in C ([0,T ]; L2(Ω)).

Also, for the stationary states we have that

f
ε → f , and y ε → y strongly in L2(Ω).
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Singular Limit of the Turnpike Property

Corollary:

Let (y , f ) and (y , f ) the optimal variable of the optimization problems evolutive ans
stationary variables subject to the homogenized equations respectively. Then there
exist two positive constants C and µ, independents of T and ε such that

‖y(·, t)− y(·)‖L2(Ω) + ‖f (·, t)− f (·)‖L2(Ω) ≤ C (e−µt + e−µ(T−t)),

for every t ∈ (0,T ).

In other words, the previous corollary ensures that we can pass the limit in the turnpike
property when ε→ 0.
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Numerical Simulations

Let us consider the following optimal control problem

ḿın
f ε∈L2(0,T ;(0,1))

{
JTε (f ε) =

1

2

∫ T

0
‖f ε(·, t)‖2

L2(0,1)dt + ‖y ε(·, t)− 1‖2
L2(0,1)dt

}
.

where y ε is the solution of the highly oscillatory heat equation with T=100.

We introduce the corresponding stationary optimization problem

ḿın
f
ε∈L2(0,1)

{
Js(f

ε
) =

1

2

(
‖f ε(·)‖2

L2(0,1) + ‖y ε(·)− 1‖2
L2(0,1)

)}
.

where in this case y ε is the solution of the respective stationary system.

The previous problems with the periodic function

a(x) = sin2(xπ) + 0,5.
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Numerical Simulations

Using Gekko library in Python, we obtain the following simulations

(a) Evolutive vs Stationary with ε = 0,5. (b) Evolutive vs Stationary with ε = 0,3.
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Numerical Simulations

(a) Evolutive vs Stationary with ε = 0,1. (b) Evolutive vs Stationary with ε = 0,02.

Author: Mart́ın Hernández Salinas. Uniform Turnpike Property and Singular Limits



Uniform Turnpike property Numerical Simulations

Numerical Simulations

‖y ε(t)− y ε‖L2(Ω) + ‖f ε(t)− f
ε‖L2(Ω) ≤ K (e−µt + e−µ(T−t))

Figura: Left-hand side of the turnpike exponential inequality, for different values of ε ∈ (0, 1).

Here the constants are fixed. The value is K = 0,1 and µ = 1,5.
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Numerical Simulations

Let analyze the homogenized system. The coefficient is given by

M(a−1)−1 =

(
1

|Ω|

∫
Ω

1

a(x)
dx

)−1

In our example M(a−1)−1 ≈ 0,86603.

Solving the optimal control problems (evolutive and stationary) subject to the
homogenized equations with coefficient aH , we have
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Numerical Simulations

(a) Exponential turnpike property with
constant K = 0,1 and µ = 1,5.

(b) Optimal states with different values of ε.

We can observe that even in the limit case when ε→ 0, the turnpike property still
holds with the same constants. In particular, we can observe the turnpike property for
the homogenized system.
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Conclusions

The main conclusions of this work are the followings:

1. In our setting, uniform controllability property implies the uniform turnpike
property.

2. Once we have a uniform turnpike property and if we know results from
homogenization theory that guarantee that we can pass the limit in the ε, then we
can conclude the turnpike property for the limit system.

3. The conclusion of this work can be extended easily to some general lineal
parabolic equations.
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Open problems

1. It would be interesting to investigate similar questions or the equations
εy εtt + y εt −∆y ε + y ε = f ε in Ω× (0,T ),

y ε = 0 on ∂Ω× (0,T ),

y ε(x , 0) = y0(x), y εt (x , 0) = y1(x) in Ω.

and 
y εtt −∆y ε + εy εt = f ε in Ω× (0,T ),

y ε = 0 on ∂Ω× (0,T ),

y ε(x , 0) = y0(x), y εt (x , 0) = y1(x) in Ω.

2. It is possible conclude the same result only assuming uniform approximate
controllability?
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Thanks for your attention
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