An eigenvalue problem of Steklov type as $p \to +\infty$

Gloria Paoli

Friedrich-Alexander-Universität Erlangen-Nürnberg

Unterstützt von / Supported by

$$\begin{cases} \Delta u = 0 & \text{in } \Omega = \Omega_0 \backslash \overline{B_{R_1}} \\ \frac{\partial u}{\partial \nu} = \sigma(\Omega) u & \text{on } \partial \Omega_0 \\ u = 0 & \text{on } \partial B_{R_1}, \end{cases}$$

$$\begin{cases} \Delta u = 0 & \text{in } \Omega = \Omega_0 \backslash \overline{B_{R_1}} \\ \frac{\partial u}{\partial \nu} = \sigma(\Omega) u & \text{on } \partial \Omega_0 \\ u = 0 & \text{on } \partial B_{R_1}, \end{cases}$$

- $\Omega_0 \subset \mathbb{R}^n$ is an open bounded, connected and Lipschitz set
- B_{R_1} is the ball centered at the origin with radius $R_1 > 0$ and $B_{R_1} \subseteq \Omega_0$;
- $\Omega := \Omega_0 \setminus \overline{B_{R_1}}$ and ν is the outer unit normal to $\partial \Omega_0$;

•
$$u \in H^1_{\partial B_{R_1}}(\Omega);$$

$$\begin{cases} \Delta u = 0 & \text{in } \Omega = \Omega_0 \backslash \overline{B_{R_1}} \\ \frac{\partial u}{\partial \nu} = \sigma(\Omega) u & \text{on } \partial \Omega_0 \\ u = 0 & \text{on } \partial B_{R_1}, \end{cases}$$

- Ω₀ ⊂ ℝⁿ is an open bounded, connected and Lipschitz set
- B_{R_1} is the ball centered at the origin with radius $R_1 > 0$ and $B_{R_1} \subseteq \Omega_0$;
- $\Omega := \Omega_0 \setminus \overline{B_{R_1}}$ and ν is the outer unit normal to $\partial \Omega_0$;

•
$$u \in H^1_{\partial B_{R_1}}(\Omega);$$

$$\begin{cases} \Delta u = 0 & \text{in } \Omega = \Omega_0 \backslash \overline{B_{R_1}} \\ \frac{\partial u}{\partial \nu} = \sigma(\Omega) u & \text{on } \partial \Omega_0 \\ u = 0 & \text{on } \partial B_{R_1}, \end{cases}$$

- $\Omega_0 \subset \mathbb{R}^n$ is an open bounded, connected and Lipschitz set
- B_{R_1} is the ball centered at the origin with radius $R_1 > 0$ and $B_{R_1} \subseteq \Omega_0$;
- $\Omega := \Omega_0 \setminus \overline{B_{R_1}}$ and ν is the outer unit normal to $\partial \Omega_0$;

•
$$u \in H^1_{\partial B_{R_1}}(\Omega);$$

The spectrum is discrete; the eigenvalues can be ordered in ascending order diverging to $+\infty$ $0 < \sigma_1(\Omega) \le \sigma_2(\Omega) \le ... \to +\infty$

$$\begin{cases} \Delta u = 0 & \text{in } \Omega = \Omega_0 \backslash \overline{B_{R_1}} \\ \frac{\partial u}{\partial \nu} = \sigma(\Omega) u & \text{on } \partial \Omega_0 \\ u = 0 & \text{on } \partial B_{R_1}, \end{cases}$$

- $\Omega_0 \subset \mathbb{R}^n$ is an open bounded, connected and Lipschitz set
- B_{R_1} is the ball centered at the origin with radius $R_1 > 0$ and $B_{R_1} \subseteq \Omega_0$;
- $\Omega := \Omega_0 \setminus \overline{B_{R_1}}$ and ν is the outer unit normal to $\partial \Omega_0$;

• $u \in H^1_{\partial B_{R_1}}(\Omega);$

The spectrum is discrete; the eigenvalues can be ordered in ascending order diverging to $+\infty$ $0 < \sigma_1(\Omega) \le \sigma_2(\Omega) \le ... \to +\infty$

 $\sigma_1(\Omega) > 0$ if $R_1 \neq 0$.

$$\begin{cases} \Delta u = 0 & \text{in } \Omega = \Omega_0 \backslash \overline{B_{R_1}} \\ \frac{\partial u}{\partial \nu} = \sigma(\Omega) u & \text{on } \partial \Omega_0 \\ u = 0 & \text{on } \partial B_{R_1}, \end{cases}$$

- $\Omega_0 \subset \mathbb{R}^n$ is an open bounded, connected and Lipschitz set
- B_{R_1} is the ball centered at the origin with radius $R_1 > 0$ and $B_{R_1} \subseteq \Omega_0$;
- $\Omega := \Omega_0 \setminus \overline{B_{R_1}}$ and ν is the outer unit normal to $\partial \Omega_0$;

•
$$u \in H^1_{\partial B_{R_1}}(\Omega);$$

The following scaling invarian property holds, $\forall t > 0$:

$$\sigma_1(t\Omega) = t^{-1}\sigma_1(\Omega).$$

Aim

We want to study a shape optimization problem for $\sigma_1(\Omega)$ under volume and perimeter constraints;

Some references

- [A] Agranovich, Russ. J. Math. Phys. (2006)
- [BKPS] Bañuelos Kulczycki Polterovich Siudeja, Amer. Math. Soc. (2010)
- [BGR] Bonder Groisman Rossi, Ann. Mat. Pura Appl (2007)
- [D] Dittmar, Elsevier (2005)
- [ET] Egert Tolksdorf, Discrete Contin. Dyn. Syst. (2017)
- [F] Ftouhi, ESAIM (2021)
- [GPPS] Gavitone Paoli Piscitelli Sannipoli, ArXiv (2021)
- [GP] Gavitone Piscitelli, ArXiv (2022)
- [HP] Hersch Payne, ZAMP (1968)
- [HLS] Hong, Lim Seo, ArXiv (2020)
- [PPS] Paoli Piscitelli Sannipoli, Comm. Pure Appl. Anal. (2021)

[S] - Seo, Ann. Glob Anal. Geo. (2020)

[SV] - Santhanam - Verma, Monat. Math. (2020)

Motivation

The Steklov- Dirichlet and its related eigenvalue problems are of importance from both theoretical and applied perspectives.

- Partially free vibration modes of a thin planar membrane without mass on the interior and with mass on the boundary can be interpreted as Steklov-Dirichlet eigenfunctions;
- this problem has been studied in relation to hydrodynamics such as the sloshing problem (oscillations of fluid in a container).

$$\sigma_{1}(\Omega) = \inf_{\substack{v \in H^{1}_{\partial B_{R_{1}}}(\Omega) \\ v \neq 0}} \frac{\int_{\Omega} |\nabla v|^{2} dx}{\int_{\partial \Omega_{0}} v^{2} d\mathcal{H}^{n-1}},$$

$$\sigma_1(\Omega) = \inf_{\substack{v \in \mathcal{H}^1_{\partial B_{R_1}}(\Omega) \\ v \neq 0}} \frac{\int_{\Omega} |\nabla v|^2 dx}{\int_{\partial \Omega_0} v^2 d\mathcal{H}^{n-1}},$$

• There exists a function $u \in H^1_{\partial B_{R_1}}(\Omega)$ which achieves the minimum, $\sigma_1(\Omega)$ is simple and the relative eigenfunctions have constant sign in Ω .

$$\sigma_{1}(\Omega) = \inf_{\substack{v \in H^{1}_{\partial B_{R_{1}}}(\Omega) \\ v \neq 0}} \frac{\int_{\Omega} |\nabla v|^{2} dx}{\int_{\partial \Omega_{0}} v^{2} d\mathcal{H}^{n-1}},$$

- There exists a function u ∈ H¹_{∂B_{R1}}(Ω) which achieves the minimum, σ₁(Ω) is simple and the relative eigenfunctions have constant sign in Ω.
- When $\Omega_0 = B_{R_2}$, $R_2 > R_1$, i.e. $\Omega = A_{R_1,R_2}$, u(x) = w(|x|) = w(r),

$$w(r) = \begin{cases} \ln r - \ln R_1 & n = 2\\ \left(\frac{1}{R_1^{n-2}} - \frac{1}{r^{n-2}}\right) & n \ge 3 \end{cases} \qquad \sigma_1(A_{R_1,R_2}) = \begin{cases} \frac{1}{R_2 \log\left(\frac{R_2}{R_1}\right)} & n = 2\\ \frac{n-2}{R_2 \left[\left(\frac{R_2}{R_1}\right)^{n-2} - 1\right]} & n \ge 3. \end{cases}$$

[A], [PPS], [SV], [F], [D], [HLS].

$$\sigma_{1}(\Omega) = \inf_{\substack{v \in H^{1}_{\partial B_{R_{1}}}(\Omega) \\ v \neq 0}} \frac{\int_{\Omega} |\nabla v|^{2} dx}{\int_{\partial \Omega_{0}} v^{2} d\mathcal{H}^{n-1}},$$

- There exists a function u ∈ H¹_{∂B_{R1}}(Ω) which achieves the minimum, σ₁(Ω) is simple and the relative eigenfunctions have constant sign in Ω.
- When $\Omega_0 = B_{R_2}$, $R_2 > R_1$, i.e. $\Omega = A_{R_1,R_2}$, u(x) = w(|x|) = w(r),

$$w(r) = \begin{cases} \ln r - \ln R_1 & n = 2\\ \left(\frac{1}{R_1^{n-2}} - \frac{1}{r^{n-2}}\right) & n \ge 3 \end{cases} \qquad \sigma_1(A_{R_1,R_2}) = \begin{cases} \frac{1}{R_2 \log\left(\frac{R_2}{R_1}\right)} & n = 2\\ \frac{n-2}{R_2 \left[\left(\frac{R_2}{R_1}\right)^{n-2} - 1\right]} & n \ge 3. \end{cases}$$

 $\sigma_1(A_{R_1,R_2}) \rightarrow 0$ if $R_1 \rightarrow 0$

Eigenvalue problems in doubly connected domains

$$C\left(\frac{R_m}{R_M}\right)^{n-1}\sigma_1\left(A_{R_1,R_m}\right) \leqslant \sigma_1(\Omega) \leqslant \left(\frac{R_M}{R_m}\right)^{n-1}\sigma_1(A_{R_1,R_M}),$$

The equality case holds if and only if Ω is a spherical shell.

$$C\left(\frac{R_m}{R_M}\right)^{n-1}\sigma_1(A_{R_1,R_m}) \leq \sigma_1(\Omega) \leq \left(\frac{R_M}{R_m}\right)^{n-1}\sigma_1(A_{R_1,R_M}),$$

The equation area holds if and only if Ω is a sub-vised shall.

The equality case holds if and only if Ω is a spherical shell.

where

- $\rho_0(x) = \sup\{\lambda \ge 0 : \lambda x \in \Omega_0\}$ with $x \in \mathbb{S}^{n-1}$, is the radial function of Ω_0 . So, $\partial \Omega_0 = \{x \rho_0(x), x \in \mathbb{S}^{n-1}\};$
- $R_m = \min_{\mathbb{S}^{n-1}} \rho_0$; minimal distance of $\partial \Omega_0$ from the origin
- $R_M = \max_{\mathbb{S}^{n-1}} \rho_0$; maximal distance of $\partial \Omega_0$ from the origin

•
$$C = \frac{1}{\max_{\mathbb{S}^{n-1}} \left(\sqrt{1 + \frac{|\nabla_{\tau} \rho_0|^2}{\rho_0^2}} \right)}$$

$$C\left(\frac{R_m}{R_M}\right)^{n-1}\sigma_1\left(A_{R_1,R_m}\right) \leqslant \sigma_1(\Omega) \leqslant \left(\frac{R_M}{R_m}\right)^{n-1}\sigma_1(A_{R_1,R_M}),$$

The equality case holds if and only if Ω is a spherical shell.

where

- $\rho_0(x) = \sup\{\lambda \ge 0 : \lambda x \in \Omega_0\}, \quad x \in \mathbb{S}^{n-1}$, is the radial function of Ω_0 ;
- $R_m = \min_{\mathbb{S}^{n-1}} \rho_0;$

•
$$R_M = \max_{\mathbb{S}^{n-1}} \rho_0;$$

•
$$C = \frac{1}{\max_{\mathbb{S}^{n-1}} \left(\sqrt{1 + \frac{|\nabla_{\tau} \rho_0|^2}{\rho_0^2}} \right)}$$

•
$$\sigma_1(\Omega) > 0$$
 being $R_1 > 0$ fixed.
• $\sigma_1(\Omega) \rightarrow 0$ as $R_1 \rightarrow 0$.

$$\sigma_1(\Omega) \leqslant \frac{2}{n\omega_n^{\frac{1}{n}} \left(\left(\frac{V(\Omega)}{2\omega_n} + R_1^n \right)^{\frac{1}{n}} - R_1 \right)^2} (V(\Omega))^{\frac{1}{n}}$$

$$\sigma_1(\Omega) \leqslant \frac{2}{n\omega_n^{\frac{1}{n}} \left(\left(\frac{V(\Omega)}{2\omega_n} + R_1^n \right)^{\frac{1}{n}} - R_1 \right)^2 (V(\Omega))^{\frac{1}{n}}}$$

[PPS].

• $\sigma_1(\Omega)$ is bounded from above when R_1 and $V(\Omega)$ are fixed

$$\sigma_1(\Omega) \leqslant \frac{2}{n\omega_n^{\frac{1}{n}} \left(\left(\frac{V(\Omega)}{2\omega_n} + R_1^n \right)^{\frac{1}{n}} - R_1 \right)^2} (V(\Omega))^{\frac{1}{n}}$$

[PPS].

• $\sigma_1(\Omega)$ is bounded from above when R_1 and $V(\Omega)$ are fixed

$$\sigma_1(\Omega) \leqslant C_2(n) \frac{\left(P(\Omega_0)\right)^{\frac{1}{n-1}}}{R_1^2}$$

$$\sigma_1(\Omega) \leqslant \frac{2}{n\omega_n^{\frac{1}{n}} \left(\left(\frac{V(\Omega)}{2\omega_n} + R_1^n \right)^{\frac{1}{n}} - R_1 \right)^2} (V(\Omega))^{\frac{1}{n}}$$

[PPS].

• $\sigma_1(\Omega)$ is bounded from above when R_1 and $V(\Omega)$ are fixed

$$\sigma_1(\Omega) \leqslant C_2(n) \frac{\left(P(\Omega_0)\right)^{\frac{1}{n-1}}}{R_1^2}.$$

GPPS].

• $\sigma_1(\Omega)$ is bounded from above when R_1 and $P(\Omega_0)$ are fixed

Eigenvalue problems in doubly connected domains

FAU

Questions

- Does there exist an optimal set that maximizes $\sigma_1(\Omega)$ when R_1 and $V(\Omega_0)$ are fixed?
- If yes, what is the shape of the miximiser?
- What about the perimeter constraint? What happens?

Questions

- Does there exist an optimal set that maximizes $\sigma_1(\Omega)$ when R_1 and $V(\Omega_0)$ are fixed?
- If yes, what is the shape of the miximiser?
- What about the perimeter constraint? What happens?

The optimization problem under volume constraint has been studied when

Questions

- Does there exist an optimal set that maximizes $\sigma_1(\Omega)$ when R_1 and $V(\Omega_0)$ are fixed?
- If yes, what is the shape of the miximiser?
- What about the perimeter constraint? What happens?

The optimization problem under volume constraint has been studied when

• $\Omega = B_{R_2} \setminus \overline{B_{R_1}(x_0)}$, where B_{R_2} is a ball centered at the origin and $B_{R_1}(x_0)$ is a ball centered at $x_0 \in \mathbb{R}^n$ such that $B_{R_1}(x_0) \subseteq B_{R_2}$.

Questions

- Does there exist an optimal set that maximizes $\sigma_1(\Omega)$ when R_1 and $V(\Omega_0)$ are fixed?
- If yes, what is the shape of the miximiser?
- What about the perimeter constraint? What happens?

The optimization problem under volume constraint has been studied when

• $\Omega = B_{R_2} \setminus \overline{B_{R_1}(x_0)}$, where B_{R_2} is a ball centered at the origin and $B_{R_1}(x_0)$ is a ball centered at $x_0 \in \mathbb{R}^n$ such that $B_{R_1}(x_0) \Subset B_{R_2}$.

An optimization problem for $\sigma_1(\Omega)$: annular sets

Theorem

Among all doubly connected domains of \mathbb{R}^n , $n \ge 2$ of the form $B_{R_2} \setminus \overline{B_{R_1}(x_0)}$, with $B_{R_1}(x_0) \Subset B_{R_2}$ and R_1 , R_2 fixed, $\sigma_1(\Omega)$ achieves its maximal value if and only if when the two balls are concentric.

 $[F] (n \ge 2), [SV](n > 2) (see also [S])$

 $\mathcal{A}_{R_1}(\omega) := \big\{ \Omega = \Omega_0 \setminus \overline{B}_{R_1}, \ \Omega_0 \subset \mathbb{R}^n \text{ open, convex } : \ B_{R_1} \Subset \mathcal{K} \colon \ \mathcal{V}(\Omega) = \omega \big\}.$

$$\mathcal{A}_{R_1}(\omega) := \big\{ \Omega = \Omega_0 \setminus \overline{B}_{R_1}, \ \Omega_0 \subset \mathbb{R}^n \text{ open, convex } : \ B_{R_1} \Subset \mathcal{K} : \ V(\Omega) = \omega \big\}.$$
$$\mathcal{B}_{R_1}(\kappa) := \big\{ D = \mathcal{K} \setminus \overline{B}_{R_1}, \ \mathcal{K} \subset \mathbb{R}^n, \text{ open, convex } : \ B_{R_1} \Subset \mathcal{K}, \ \mathcal{P}(\mathcal{K}) = \kappa \big\}.$$

$$\mathcal{A}_{R_{1}}(\omega) := \{ \Omega = \Omega_{0} \setminus \overline{B}_{R_{1}}, \ \Omega_{0} \subset \mathbb{R}^{n} \text{ open, convex} : B_{R_{1}} \Subset K : V(\Omega) = \omega \}.$$
$$\mathcal{B}_{R_{1}}(\kappa) := \{ D = K \setminus \overline{B}_{R_{1}}, \ K \subset \mathbb{R}^{n}, \text{ open, convex} : B_{R_{1}} \Subset K, \ P(K) = \kappa \}.$$

Theorem [GPPS]

 $\text{ There exists } E \in \mathcal{A}_{R_1}(\omega) \text{, such that } \quad \sup_{\Omega \in \mathcal{A}_{R_1}(\omega)} \sigma_1(\Omega) = \sigma_1(E).$

Theorem [GPPS]

There exists
$$\Omega \in \mathcal{B}_{\mathcal{R}_1}(\kappa)$$
, such that $\sup_{D \in \mathcal{B}_{\mathcal{R}_1}(\kappa)} \sigma_1(D) = \sigma_1(\Omega)$.

$$\begin{split} \mathcal{A}_{R_1}(\omega) &:= \big\{ \Omega = \Omega_0 \backslash \overline{B}_{R_1}, \ \Omega_0 \subset \mathbb{R}^n \text{ open, convex } : \ B_{R_1} \Subset \mathcal{K} : \ \mathcal{V}(\Omega) = \omega \big\}. \\ \mathcal{B}_{R_1}(\kappa) &:= \big\{ D = \mathcal{K} \backslash \overline{B}_{R_1} \ , \ \mathcal{K} \subset \mathbb{R}^n, \text{ open, convex } : \ B_{R_1} \Subset \mathcal{K}, \ \mathcal{P}(\mathcal{K}) = \kappa \big\}. \end{split}$$

Theorem [GPPS]

 $\text{ There exists } E \in \mathcal{A}_{R_1}(\omega) \text{, such that } \sup_{\Omega \in \mathcal{A}_{R_1}(\omega)} \sigma_1(\Omega) = \sigma_1(E).$

Theorem [GPPS]

There exists
$$\Omega \in \mathcal{B}_{\mathcal{R}_1}(\kappa)$$
, such that $\sup_{D \in \mathcal{B}_{\mathcal{R}_1}(\kappa)} \sigma_1(D) = \sigma_1(\Omega)$.

→ Let $K \subset \mathbb{R}^n$ be a convex body such that $K \subset \Omega_0$ and let $\Omega_K = \Omega_0 \setminus \overline{K}$. The existence result still holds in this case.

The optimization problem: Shape of the optimal set

Theorem [GPPS]

Let $R_1 > 0$, $\Omega_0 \subset \mathbb{R}^n$ be an open, bounded and convex set, $n \ge 2$, such that $B_{R_1} \subset \Omega_0 \subseteq B_{\bar{R}}$, where $B_{\bar{R}}$ is the ball centered at the origin with radius \bar{R} given by

$$\bar{R} = \begin{cases} R_1 e^{\sqrt{2}} & \text{if } n = 2\\ R_1 \left[\frac{(n-1) + (n-2)\sqrt{2(n-1)}}{n-1} \right]^{\frac{1}{n-2}} & \text{if } n \ge 3 \end{cases}$$

Then,

$$\sigma_1(\Omega) \leqslant \sigma_1(A_{R_1,R_2}),$$

where $\Omega = \Omega_0 \setminus \overline{B}_{R_1}$, A_{R_1,R_2} is the spherical shell of radii $R_1 < R_2$ having the same volume as Ω .

$$\sigma_{1}(\Omega) = \inf_{\substack{u \in H^{1}_{\partial B_{R_{1}}}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega} |\nabla u|^{2} dx}{\int_{\partial \Omega_{0}} u^{2} d\mathcal{H}^{n-1}}, \leq \frac{\int_{\Omega} |\nabla w|^{2} dx}{\int_{\partial \Omega_{0}} w^{2} d\mathcal{H}^{n-1}}$$

$$\sigma_{1}(\Omega) = \inf_{\substack{u \in H_{\partial B_{r_{1}}}^{1}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega} |\nabla u|^{2} dx}{\int_{\partial \Omega_{0}} u^{2} d\mathcal{H}^{n-1}}, \leq \frac{\int_{\Omega} |\nabla w|^{2} dx}{\int_{\partial \Omega_{0}} w^{2} d\mathcal{H}^{n-1}}$$

Test function: $w(r) = \left\{ \begin{pmatrix} \ln r - \ln R_{1} \\ \left(\frac{1}{R_{1}^{n-2}} - \frac{1}{r^{n-2}}\right) & n \geq 3 \end{pmatrix} \right\}$

$$\sigma_{1}(\Omega) = \inf_{\substack{u \in \mathcal{H}_{\partial B_{R_{1}}}^{1}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega} |\nabla u|^{2} dx}{\int_{\partial \Omega_{0}} u^{2} d\mathcal{H}^{n-1}}, \leq \frac{\int_{\Omega} |\nabla w|^{2} dx}{\int_{\partial \Omega_{0}} w^{2} d\mathcal{H}^{n-1}}$$

•
$$\int_{\Omega} |\nabla w|^2 \, dx \leq \int_{A_{R_1,R_2}} |\nabla w|^2 \, dx.$$

$$\sigma_1(\Omega) = \inf_{\substack{u \in H^1_{\partial B_{R_1}}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\int_{\partial \Omega_0} u^2 \, d\mathcal{H}^{n-1}}, \leq \frac{\int_{\Omega} |\nabla w|^2 \, dx}{\int_{\partial \Omega_0} w^2 \, d\mathcal{H}^{n-1}}$$

•
$$\int_{\Omega} |\nabla w|^2 \, dx \leq \int_{A_{R_1,R_2}} |\nabla w|^2 \, dx.$$

 $|\nabla w|^2$ is a non-negative radially symmetric decreasing function for any $n \ge 2$. Then it follows by the Hardy-Littlewood inequality

$$\sigma_{1}(\Omega) = \inf_{\substack{u \in \mathcal{H}_{\partial B_{R_{1}}}^{1}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega} |\nabla u|^{2} dx}{\int_{\partial \Omega_{0}} u^{2} d\mathcal{H}^{n-1}}, \leq \frac{\int_{\Omega} |\nabla w|^{2} dx}{\int_{\partial \Omega_{0}} w^{2} d\mathcal{H}^{n-1}}$$

•
$$\int_{\Omega} |\nabla w|^2 \, dx \leqslant \int_{A_{R_1,R_2}} |\nabla w|^2 \, dx.$$

•
$$\int_{\partial\Omega_0} w^2 d\mathcal{H}^{n-1} \ge \int_{\partial B_{R_2}} w^2 d\mathcal{H}^{n-1}.$$

$$\sigma_{1}(\Omega) = \inf_{\substack{u \in \mathcal{H}^{1}_{\partial B_{R_{1}}}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega} |\nabla u|^{2} dx}{\int_{\partial \Omega_{0}} u^{2} d\mathcal{H}^{n-1}}, \leq \frac{\int_{\Omega} |\nabla w|^{2} dx}{\int_{\partial \Omega_{0}} w^{2} d\mathcal{H}^{n-1}}$$

•
$$\int_{\Omega} |\nabla w|^2 dx \leq \int_{A_{R_1,R_2}} |\nabla w|^2 dx.$$

•
$$\int_{\partial\Omega_0} w^2 \, d\mathcal{H}^{n-1} \ge \int_{\partial B_{R_2}} w^2 \, d\mathcal{H}^{n-1}.$$

- The radial representation $\partial \Omega_0 = \{x \rho_0(x), x \in \mathbb{S}^{n-1}\},\$
- Jensen's inequality (The restrictions on Ω allow us to use the convexity of a one-dimensional function).

$$\sigma_{1}(\Omega) = \inf_{\substack{u \in \mathcal{H}^{1}_{\partial B_{R_{1}}}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega} |\nabla u|^{2} dx}{\int_{\partial \Omega_{0}} u^{2} d\mathcal{H}^{n-1}}, \leq \frac{\int_{\Omega} |\nabla w|^{2} dx}{\int_{\partial \Omega_{0}} w^{2} d\mathcal{H}^{n-1}}$$

•
$$\int_{\Omega} |\nabla w|^2 dx \leq \int_{A_{R_1,R_2}} |\nabla w|^2 dx.$$

•
$$\int_{\partial\Omega_0} w^2 d\mathcal{H}^{n-1} \ge \int_{\partial B_{R_2}} w^2 d\mathcal{H}^{n-1}.$$

The second claim cannot holds under perimeter constraint!

- Let $R_2 = 1$ and $R_1 = 10^{-5}$.
- Let Ω_0 be an ellipse with the same perimeter as $A_{R_1,1}$ and let *a* and *b* its semi-axes.

- Let $R_2 = 1$ and $R_1 = 10^{-5}$.
- Let Ω_0 be an ellipse with the same perimeter as $A_{R_1,1}$ and let *a* and *b* its semi-axes.

In order to compute the integral over the ellipse, we used the formula $P(\Omega_0) = 2\pi \sqrt{\frac{a^2+b^2}{2}}$, which is an approximation by excess for the perimeter of the ellipse.

- Let $R_2 = 1$ and $R_1 = 10^{-5}$.
- Let Ω_0 be an ellipse with the same perimeter as $A_{R_1,1}$ and let *a* and *b* its semi-axes.

In order to compute the integral over the ellipse, we used the formula $P(\Omega_0) = 2\pi \sqrt{\frac{a^2+b^2}{2}}$, which is an approximation by excess for the perimeter of the ellipse. Chosen b = 1.1 we obtain

$$D(A_{R_1,1}) \approx 832, 820208 > 828, 919156 \approx D(\Omega_0),$$

where $D(\Omega_0) = \int_{\partial \Omega_0} w^2 ds$ and w is the eigenfunction of $\sigma_1(A_{R_1,1})$.

- Let $R_2 = 1$ and $R_1 = 10^{-5}$.
- Let Ω_0 be an ellipse with the same perimeter as $A_{R_1,1}$ and let *a* and *b* its semi-axes.

In order to compute the integral over the ellipse, we used the formula $P(\Omega_0) = 2\pi \sqrt{\frac{a^2+b^2}{2}}$, which is an approximation by excess for the perimeter of the ellipse. Chosen b = 1.1 we obtain

$$D(A_{R_1,1}) \approx 832, 820208 > 828, 919156 \approx D(\Omega_0),$$

where $D(\Omega_0) = \int_{\partial \Omega_0} w^2 ds$ and w is the eigenfunction of $\sigma_1(A_{R_1,1})$.

This means that we cannot study separately the numerator and denominator to obtain inequality under perimeter constraint.

- \bullet Remove the restriction on Ω_0 in the isoperimetric result by using a new technique.
- Prove the isoperimetric result also with the perimeter constraint.

Thank you for your attention!