
An eigenvalue problem of Steklov type
as p Ñ `8

Gloria Paoli

Friedrich-Alexander-Universität Erlangen-Nürnberg



The Steklov-Dirichlet eigenvalue problem
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∆u “ 0 in Ω “ Ω0zBR1

Bu

Bν
“ σpΩqu on BΩ0

u “ 0 on BBR1 ,

Ω0 Ă Rn is an open bounded, connected
and Lipschitz set

BR1 is the ball centered at the origin with
radius R1 ą 0 and BR1 Ť Ω0;

Ω :“ Ω0zBR1 and ν is the outer unit
normal to BΩ0;

u P H1
BBR1

pΩq;
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The spectrum is discrete; the eigenvalues can be ordered in ascending order
diverging to `8
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and Lipschitz set

BR1 is the ball centered at the origin with
radius R1 ą 0 and BR1 Ť Ω0;

Ω :“ Ω0zBR1 and ν is the outer unit
normal to BΩ0;

u P H1
BBR1

pΩq;

The spectrum is discrete; the eigenvalues can be ordered in ascending order
diverging to `8

0 ă σ1pΩq ď σ2pΩq ď ... Ñ `8

σ1pΩq ą 0 if R1 ‰ 0.
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∆u “ 0 in Ω “ Ω0zBR1

Bu

Bν
“ σpΩqu on BΩ0

u “ 0 on BBR1 ,

Ω0 Ă Rn is an open bounded, connected
and Lipschitz set

BR1 is the ball centered at the origin with
radius R1 ą 0 and BR1 Ť Ω0;

Ω :“ Ω0zBR1 and ν is the outer unit
normal to BΩ0;

u P H1
BBR1

pΩq;

The following scaling invarian property holds, @t ą 0:

σ1ptΩq “ t´1σ1pΩq.

Aim

We want to study a shape optimization problem for σ1pΩq under volume
and perimeter constraints;
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Motivation

The Steklov- Dirichlet and its related eigenvalue problems are of importance from
both theoretical and applied perspectives.

Partially free vibration modes of a thin planar membrane without mass on the
interior and with mass on the boundary can be interpreted as
Steklov-Dirichlet eigenfunctions;

this problem has been studied in relation to hydrodynamics such as the
sloshing problem (oscillations of fluid in a container).
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The first Steklov-Dirichlet eigenvalue σ1pΩq

σ1pΩq “ inf
vPH1

BBR1
pΩq

vı0

ż

Ω

|∇v |2 dx
ż

BΩ0

v2 dHn´1
,

There exists a function u P H1
BBR1

pΩq which achieves the minimum, σ1pΩq is

simple and the relative eigenfunctions have constant sign in Ω.

When Ω0 “ BR2 , R2 ą R1, i.e. Ω “ AR1,R2 , upxq “ wp|x |q “ wprq,

wprq“

$

&

%

ln r ´ lnR1 n “ 2
ˆ

1

Rn´2
1

´
1

rn´2

˙

n ě 3
σ1pAR1,R2q “

$

’

’

&

’

’

%

1

R2 log
´

R2
R1

¯ n “ 2

n´2

R2

„

´

R2
R1

¯n´2
´1

ȷ n ě 3.
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The first Steklov-Dirichlet eigenvalue σ1pΩq
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R2 log
´

R2
R1

¯ n “ 2

n´2

R2

„

´

R2
R1

¯n´2
´1

ȷ n ě 3.

σ1pAR1,R2q Ñ 0 if R1 Ñ 0
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Upper and lower bounds for σ1pΩq

C

ˆ

Rm

RM

˙n´1

σ1 pAR1,Rmq ď σ1pΩq ď

ˆ

RM

Rm

˙n´1

σ1pAR1,RM
q,

The equality case holds if and only if Ω is a spherical shell.
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Upper and lower bounds for σ1pΩq

C

ˆ

Rm

RM

˙n´1

σ1 pAR1,Rmq ď σ1pΩq ď

ˆ

RM

Rm

˙n´1

σ1pAR1,RM
q,

The equality case holds if and only if Ω is a spherical shell.

where

ρ0pxq “ suptλ ě 0: λx P Ω0u with x P Sn´1, is the radial function of Ω0. So,
BΩ0 “ txρ0pxq, x P Sn´1u;

Rm “ minSn´1 ρ0; minimal distance of BΩ0 from the origin

RM “ maxSn´1 ρ0; maximal distance of BΩ0 from the origin

C “ 1

maxSn´1

ˆ
c

1`
|∇τ ρ0|2

ρ2
0

˙

[GPPS].
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Upper and lower bounds for σ1pΩq

C

ˆ

Rm

RM

˙n´1

σ1 pAR1,Rmq ď σ1pΩq ď

ˆ

RM

Rm

˙n´1

σ1pAR1,RM
q,

The equality case holds if and only if Ω is a spherical shell.

where

ρ0pxq “ suptλ ě 0: λx P Ω0u, x P Sn´1, is the radial function of Ω0;

Rm “ minSn´1 ρ0;

RM “ maxSn´1 ρ0;

C “
1

maxSn´1

´b

1 `
|∇τρ0|2

ρ2
0

¯

σ1pΩq ą 0 being R1 ą 0 fixed.

σ1pΩq Ñ 0 as R1 Ñ 0.
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Upper and lower bounds for σ1pΩq

σ1pΩq ď
2

nω
1
n
n

˜

ˆ

V pΩq

2ωn
` Rn

1

˙
1
n

´ R1

¸2 pV pΩqq
1
n

[PPS].
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σ1pΩq ď
2

nω
1
n
n

˜

ˆ

V pΩq

2ωn
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1

˙
1
n

´ R1

¸2 pV pΩqq
1
n

[PPS].

σ1pΩq is bounded from above when R1 and V pΩq are fixed
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n
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2ωn
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1

˙
1
n
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¸2 pV pΩqq
1
n
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σ1pΩq ď C2pnq
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1
n´1

R2
1

,

[GPPS].
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An optimization problem for σ1pΩq

Questions

Does there exist an optimal set that maximizes σ1pΩq when
R1 and V pΩ0q are fixed?

If yes, what is the shape of the miximiser?

What about the perimeter constraint? What happens?

The optimization problem under volume constraint has been studied when

Ω “ BR2zBR1px0q, where BR2 is a ball centered at the origin and BR1px0q is a
ball centered at x0 P Rn such that BR1px0q Ť BR2 .

x0

R1

R2
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An optimization problem for σ1pΩq: annular sets

Theorem
Among all doubly connected domains of Rn, n ě 2 of the form
BR2zBR1px0q, with BR1px0q Ť BR2 and R1, R2 fixed, σ1pΩq achieves its
maximal value if and only if when the two balls are concentric.

[F] pn ě 2q, [SV]pn ą 2q (see also [S])
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The optimization problem: Existence
Let R1 ą 0, κ ą nωnR

n´1
1 and ω ą 0 be fixed and let

AR1pωq :“
␣

Ω “ Ω0zBR1 , Ω0 Ă Rn open, convex : BR1 Ť K : V pΩq “ ω
(

.

BR1pκq :“
␣

D “ KzBR1 , K Ă Rn, open, convex : BR1 Ť K , PpK q “ κ
(

.

Theorem [GPPS]

There exists E P AR1pωq, such that sup
ΩPAR1

pωq

σ1pΩq “ σ1pE q.
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Let R1 ą 0, κ ą nωnR

n´1
1 and ω ą 0 be fixed and let

AR1pωq :“
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Ω “ Ω0zBR1 , Ω0 Ă Rn open, convex : BR1 Ť K : V pΩq “ ω
(
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BR1pκq :“
␣

D “ KzBR1 , K Ă Rn, open, convex : BR1 Ť K , PpK q “ κ
(

.

Theorem [GPPS]

There exists E P AR1pωq, such that sup
ΩPAR1

pωq

σ1pΩq “ σ1pE q.

Theorem [GPPS]

There exists Ω P BR1pκq, such that sup
DPBR1

pκq

σ1pDq “ σ1pΩq.

Ñ Let K Ă Rn be a convex body such that K Ă Ω0 and let
ΩK “ Ω0zK . The existence result still holds in this case.
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The optimization problem: Shape of the optimal set

Theorem [GPPS]

Let R1 ą 0, Ω0 Ă Rn be an open, bounded and convex set, n ě 2, such
that BR1 Ă Ω0 Ď BR̄ , where BR̄ is the ball centered at the origin with
radius R̄ given by

R̄ “

$

’

&

’

%

R1e
?
2 if n “ 2

R1

„

pn´1q`pn´2q
?

2pn´1q

n´1

ȷ
1

n´2

if n ě 3.

Then,
σ1pΩq ď σ1pAR1,R2q,

where Ω “ Ω0zBR1 , AR1,R2 is the spherical shell of radii R1 ă R2 having
the same volume as Ω.
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Idea of the proof

σ1pΩq “ inf
uPH1

BBR1
pΩq

uı0

ż

Ω

|∇u|2 dx
ż

BΩ0

u2 dHn´1
,ď

ż

Ω

|∇w |2 dx
ż

BΩ0

w2 dHn´1
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Idea of the proof

σ1pΩq “ inf
uPH1

BBR1
pΩq

uı0

ż

Ω

|∇u|2 dx
ż

BΩ0

u2 dHn´1
,ď

ż

Ω

|∇w |2 dx
ż

BΩ0

w2 dHn´1

Test function: wprq“

#

ln r ´ ln R1 n “ 2
¨

˝

1

R
n´2
1

´
1

rn´2

˛

‚ n ě 3
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Idea of the proof

σ1pΩq “ inf
uPH1

BBR1
pΩq

uı0

ż

Ω

|∇u|2 dx
ż

BΩ0

u2 dHn´1
,ď

ż

Ω

|∇w |2 dx
ż

BΩ0

w2 dHn´1

ż

Ω

|∇w |2 dx ď

ż

AR1,R2

|∇w |2 dx .
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Idea of the proof

σ1pΩq “ inf
uPH1

BBR1
pΩq

uı0

ż

Ω

|∇u|2 dx
ż

BΩ0

u2 dHn´1
,ď

ż

Ω

|∇w |2 dx
ż

BΩ0

w2 dHn´1

ż

Ω

|∇w |2 dx ď

ż

AR1,R2

|∇w |2 dx .

|∇w |2 is a non-negative radially symmetric decreasing function for any n ě 2. Then it follows by
the Hardy-Littlewood inequality
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Idea of the proof

σ1pΩq “ inf
uPH1

BBR1
pΩq

uı0

ż

Ω
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ż

BΩ0
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,ď

ż

Ω

|∇w |2 dx
ż

BΩ0

w2 dHn´1

ż

Ω

|∇w |2 dx ď

ż

AR1,R2

|∇w |2 dx .

ż

BΩ0

w2 dHn´1 ě

ż

BBR2

w2 dHn´1.
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Idea of the proof

σ1pΩq “ inf
uPH1

BBR1
pΩq

uı0

ż

Ω

|∇u|2 dx
ż

BΩ0

u2 dHn´1
,ď

ż

Ω

|∇w |2 dx
ż

BΩ0

w2 dHn´1

ż

Ω

|∇w |2 dx ď

ż

AR1,R2

|∇w |2 dx .

ż

BΩ0

w2 dHn´1 ě

ż

BBR2

w2 dHn´1.

- The radial representation BΩ0 “ tx ρ0pxq, x P Sn´1u,

- Jensen’s inequality (The restrictions on Ω allow us to use the convexity of a one-dimensional function ).
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Idea of the proof

σ1pΩq “ inf
uPH1

BBR1
pΩq

uı0

ż

Ω

|∇u|2 dx
ż

BΩ0

u2 dHn´1
,ď

ż

Ω

|∇w |2 dx
ż

BΩ0

w2 dHn´1

ż

Ω

|∇w |2 dx ď

ż

AR1,R2

|∇w |2 dx .

ż

BΩ0

w2 dHn´1 ě

ż

BBR2

w2 dHn´1.

The second claim cannot holds under perimeter constraint!
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A numerical counterexample

Let R2 “ 1 and R1 “ 10´5.

Let Ω0 be an ellipse with the same perimeter as AR1,1 and let a and b its
semi-axes.

In order to compute the integral over the ellipse, we used the formula

PpΩ0q “ 2π
b

a2`b2

2 , which is an approximation by excess for the perimeter of the

ellipse. Chosen b “ 1.1 we obtain

DpAR1,1q « 832, 820208 ą 828, 919156 « DpΩ0q,

where DpΩ0q “

ż

BΩ0

w2ds and w is the eigenfunction of σ1pAR1,1q.

This means that we cannot study separately the numerator and denominator to
obtain inequality under perimeter constraint.
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A numerical counterexample

Let R2 “ 1 and R1 “ 10´5.

Let Ω0 be an ellipse with the same perimeter as AR1,1 and let a and b its
semi-axes.

In order to compute the integral over the ellipse, we used the formula

PpΩ0q “ 2π
b

a2`b2

2 , which is an approximation by excess for the perimeter of the

ellipse.
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Works in progress

Remove the restriction on Ω0 in the isoperimetric result by using a new
technique.

Prove the isoperimetric result also with the perimeter constraint.
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Thank you for your attention!
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