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The problem

Problem
For a given compact set M ⊂ Rn and a given number r > 0 find a closed connected
Σ, such that {

M ⊂ Br(Σ)

H1(Σ) is minimal.

The problem was stated at 2003 and was actively reseached in works by Miranda,
Paolini, Butazzo and Stepanov (in Rn). They proved that a minimizer Σ exists and
that a minimizer can not contain a loop.

There are two main types of questions concerning maximal distance minimizers:

• regularity: what is local behaviour of minimizers;

• explicit examples: what it the minimizer for the concrete set M . Even for a circle
and a rectangle the question is non-trivial.
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The statement of the problem

Problem (Statement 1)

For a given compact set M ⊂ Rn and a given number r > 0 to find a closed
connected Σ, such that {

M ⊂ Br(Σ)

H1(Σ) is minimal.

Problem (Statement 2)

For a given compact set M ⊂ Rn and a given number r > 0 find a closed connected
Σ, such that {

FM (Σ) := maxy∈M dist(y,Σ) ≤ r
H1(Σ) is minimal.

Problem (Dual statement)

For a given compact set M ⊂ Rn and a given number l > 0 find a closed connected
Σ, such that {

H1(Σ) ≤ l
FM (Σ) is minimal.
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The simplest examples

Example for two points at a distance R > 2r apart:
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Each tripod Σ is a minimizer for some three points and r > 0. But not vice versa.
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The simplest examples

Another example for 3 points.
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A segment Σ is minimizer for the border (or closure) of its r-neighbourhood.
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Every maximal distance minimizer Σ for a set M and number r > 0 is also a
minimizer for r-neighbourhood of Σ. Uniqueness is an open question here.



What if M is a circle?

Let M := ∂BR(O), R > 4.98r. Then Σ is a horseshoe.
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Conjectured by Miranda, Paolini and Stepanov in 2006 for R > r. Proved by Danila
Cherkashin and T. in 2016 for R > 4.98r.
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Solution for a concrete M . A curve with a great curvature radius
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Figure: The solution for the set M with big radius of curvature

Theorem (Cherkashin, T., 2016)

For every closed convex curve M with minimal radius of curvature R and for every
r < R/5 the set of minimizers contains only horseshoes. For the circumference
M = ∂BR(O) the claim is true for r < R/4.98.

Still unknown: what is minimizer for a circle with R > r > R/4.98? (it conjectured
for a circle by Paolini, Miranda and Stepanov that the answer still is a horseshoe)



Solution for a concrete M . A stadium

Theorem (Cherkashin, T., 2016)

For every closed convex curve M with minimal radius of curvature R and for every
r < R/5 the set of minimizers contains only horseshoes. For the circumference
M = ∂BR(O) the claim is true for r < R/4.98.

Still unknown:
1 What if R > r > R/4.98? (it conjectured for a circle by Paolini, Miranda and

Stepanov that the answer still is a horseshoe)
2 What if M is a narrow stadium? (it is not a horseshoe!)
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Figure: Horseshoe is not a minimizer for long enough stadium with R < 1.75r.



Solution for a concrete M . A rectangle
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Figure: The minimizer for a rectangle M with r < r0(M).

When M is a rectangle, we described the topology of maximal distance minimizers
(see our preprint arXiv:2106.00809).

Theorem (Cherkashin–Gordeev–Strukov–T,2021)

Let M = A1A2A3A4 be a rectangle, r > 0 be chosen small enough depending on M .
Then any maximal distance minimizer has the topology depicted in the left part of
Fig. 3. The middle part of the picture contains enlarged fragment of the minimizer
near A1; the labeled angles are equal to 2π

3
. The rightmost part contains much more

enlarged fragment of minimizer near A1. A minimizer consists of 21 segments; an
approximation of the length of a minimizer is Per − 8.473981r, where Per is the
perimeter of the rectangle.



The regularity and local behaviour of the minimizers

Definition
We say that the ray (ax] is a tangent ray of the set Σ at the point x ∈ Σ if there
exists a non stabilized sequence of points xk ∈ Σ such that xk → x and ∠xkxa→ 0.

Theorem (Gordeev, T., 2022)

Let Σ be a maximal distance minimizer for a compact set M ⊂ Rn and an r > 0 be
fixed. Then

(i) the angle between each pair of tangent rays at every point of Σ is at least 2π/3.
The number of tangent rays at every point of Σ is not greater than 3.

(ii) In planar case Σ is a union of a finite number of injective images of the segment
[0, 1] with non-intersecting interiors;

Corollary

In planar case the number of triple points is finite.

Remark. It is not true for a Steiner tree, i. e. there exists an indecomposable Steiner
tree with infinite number of triple points.
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Open questions

• Find the minimizers for a circumference of radius r < R < 4.98r. Find the
minimizers for a ball.

• Find the explicit estimate for the curvature radius at the horseshoe theorem

• Find the minimizers for a given stadium.

• Can maximal distance minimizer in Euclisean space have infinite many branching
points?

• If Σ is a minimizer for some M then Σ is a minimizer for Br(Σ). Is Σ the unique

minimizer for Br(Σ)?

• Let Σ be a fixed planar compact set. It is interesting to determine whether Σ is a
minimizer for M being a set of n points and some positive r. As an obvious
necessary condition Σ should be a Steiner tree for some set of n points, but this
condition is not sufficient. It turns out that a Steiner tree for the vertices of a
square is not a maximal distance minimizer for every set of four points.



Thank you for your attention!

Figure: Indecomposable Steiner tree with infinite number of triple points


