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Consider impli
it ordinary di�erential equations (ODEs) of the form

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), t ∈ [t+,∞), (1)

A(t)
d

dt

x(t)+B(t)x(t) = f(t,x(t)), (2)

where t+ ≥ 0, A(t),B(t) (t ∈ [t+,∞)) are 
losed linear operators from X to Y

with the domains D

A(t), DB(t), D=D

A(t)∩DB(t) 6= {0}, X,Y are Bana
h spa
es,

f : [t+,∞)×X→Y.

The time-varying operators A(t), B(t) 
an be degenerate.

The di�erential equations (DEs) (1) and (2) with a degenerate (for

some t) operator A(t) are 
alled time-varying (nonautonomous)

degenerate DEs or time-varying di�erential-algebrai


equations (DAEs). In the terminology of DAEs, equations of the form (1),

(2) are 
ommonly referred to as semilinear.

We study the initial value problem (the Cau
hy problem) for the DAEs (1), (2)

with the initial 
ondition

x(t
0

) = x

0

. (3)
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Fields of appli
ation of the theory of DAEs are 
ontrol theory,

radioele
troni
s, 
yberneti
s, me
hani
s, roboti
s te
hnology, e
onomi
s, e
ology

and 
hemi
al kineti
s.

In parti
ular, semilinear DAEs are used in modelling

transient pro
esses in ele
tri
al 
ir
uits

gas �ow in networks

dynami
s of neural networks

dynami
s of 
omplex me
hani
al and te
hni
al systems (e.g., robots)

multi-se
toral e
onomi
 models

kineti
s of 
hemi
al rea
tions

Noti
e that any type of a PDE 
an be represented as a DAE in

in�nite-dimensional spa
es (an abstra
t DAE) and, possibly, a 
omplementary

boundary 
ondition.
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Model of a gas �ow for a single pipe

We 
onsider the mathemati
al model of a gas pipeline whi
h 
onsists of the

isothermal Euler equations of the form

ρ
t

=−ϕ
x

, (4)

ϕ
t

=−p
x

−gρh
x

−0.5λD−1ϕ |ϕ |ρ−1
(5)

and the equation of state for a real gas in the form

p= RT

0

ρz(p), (6)

x ∈ [0,L], t ∈ [0,t
1

)⊆ [0,∞], where [t
0

,t
1

) is the time interval, L< ∞ is the

pipe length and T

0

is the temperature

ρ = ρ(t,x), ϕ = ϕ(t,x) (ϕ := ρv, v is the velo
ity) and p= p(t,x) are
respe
tively the density, �ow rate and pressure

g is the gravitational 
onstant, and R is the spe
i�
 gas 
onstant

λ is the pipe fri
tion 
oe�
ient, and D is the pipe diameter

h= h(x) is the height pro�le of the pipe over ground

z= z(p) is the 
ompressibility fa
tor

[P. Benner, S. Grundel, C. Himpe, C. Hu
k, T. Streubel, C. Tis
hendorf. Gas

Network Ben
hmark Models, 2018℄
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Denote A=



1 0 0

0 1 0

0 0 0



, B=




0 − d

dx

0

−gh
x

0 − d

dx

0 0 −1



, f(u)=




0

− λ
2D

ϕ|ϕ|
ρ

RT

0

ρz(p)




and

u= (ρ ,ϕ ,p)T. Then we 
an write the system (4)�(6) as:

A

d

dt

u(t)+Bu(t) = f(u(t)), (7)

where u= u(t)(x) = (ρ(t,x),ϕ(t,x),p(t,x))T, x ∈ [0,L], t ∈ [0,T]⊂ [0,t
1

). The
initial 
ondition has the form:

u(0) = u

0

, u

0

= u

0

(x) = (ρ(0,x),ϕ(0,x),p(0,x))T, x ∈ [0,L], (8)

where p(0,x) is 
hosen so as to satisfy the equation (6) for t= 0, x ∈ [0,L]. We

will assume that u(t,x) satis�es suitable boundary 
onditions, for example,

ϕ(t,0) = ϕ
l

(t), p(t,0) = p

l

(t), t ∈ [0,T], (9)

i.e., u(t)(0) = u

l

(t) = (ρ(t,0),ϕ
l

(t),p
l

(t))T, where ϕ
l

(t) and p
l

(t) are given.

Then we 
onsider the IVP (1), (3), where X=Y = L

2

and

A(t),B(t) : H
1

0

[0,L] = {u(x) ∈ H

1[0,L] | u(t)(0) = u

l

(t)} → L

2

for ea
h t ∈ [0,t
1

).
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[P. Benner, S. Grundel, C. Himpe, C. Hu
k, T. Streubel, C. Tis
hendorf. Gas

Network Ben
hmark Models, 2018℄

[Azevedo-Perdi
oulis, T.-P., Jank, G. Modelling aspe
ts of des
ribing a gas

network through a DAE system. 2007℄

The gas network is 
onsidered to be des
ribed by a 
onne
ted �nite graph

G= (V,E,ψ), where V denotes a set of verti
es with |V|= n, and E denotes a set

of edges with |E|=m. The mapping ψ : E→ V×V is 
alled the in
iden
e map,

where ψ
1

(e) = v

1

is the initial vertex and ψ
2

(e) = v

2

is the �nal vertex.

We de�ne a �ow ϕ : E→R and a pressure-drop p : E→R on every edge, and a

nodal-pressure Φ : V→ R and a nodal-�ow F : V→ R on every vertex.

The Kir
hho� First Law (KFL) says that the �ow rate vanishes at any vertex of

the graph:The Kir
hho� Se
ond Law (KSL) says that the pressure drop vanishes

at every fundamental 
ir
uit of the graph.

Noti
e that the network may 
omprise valves, reservoirs, 
ompressor stations,

supplying sour
es, and regulators.

The isothermal Euler equations are linearised around the operation levels

(p∗,ϕ∗), when
e we set p= p∗+∆p and ϕ = ϕ∗+∆ϕ , with ∆p and ∆ϕ as the

deviations from the pressure-drop and �ow, respe
tively, from the referen
e values

p∗ and ϕ∗.
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Dis
retizing the gas net with respe
t to the spa
e variable x, we obtain the gas

network model in the form of a DAE of a type

∂

∂ t
(Au) = Bu+ f(t,u), (10)

where u= (∆ϕ ,Φ,u
q

,u
p

)T, u
q

denotes a 
ontrol devi
e 
ontrolling the �ow in

some edges by a ��ow�, u

p

denotes a 
ontrol devi
e 
ontrolling the �ow in some

edges by a �pressure� and A is a 
ertain degenerate matrix. The gas network

model also may in
lude the parameters denoting 
ontrol devi
es 
ontrolling the

pressure in the edges or nodes either through �ow or pressure.
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Assume that the 
hara
teristi
 operator pen
il λA(t)+B(t) (λ ∈ C is a

parameter), asso
iated with the linear part of the DAE (1) or (2), is a regular

pen
il of index not higher than 1: for ea
h t≥ t+ the pen
il λA(t)+B(t) be
regular and there exist fun
tions C

1

: [t+,∞)→ (0,∞), C
2

: [t+,∞)→ (0,∞) su
h
that for every t ∈ [t+,∞) the pen
il resolvent R(λ ,t) = (λA(t)+B(t))−1 satis�es

the 
onstraint

‖R(λ ,t)‖ ≤ C

1

(t), |λ | ≥ C

2

(t). (11)

Then for ea
h t ∈ [t+,∞), there exist the two pairs of mutually 
omplementary

proje
tors

P

j

(t) : D→ D

j

(t) and Q

j

(t) : Y→ Y

j

(t), j= 1,2,

whi
h generate the dire
t de
ompositions

D=D

1

(t)+̇D
2

(t), Y =Y

1

(t)+̇Y
2

(t) su
h that (12)

the pair of subspa
es X

1

(t), Y
1

(t) and X
2

(t), Y
2

(t) are invariant under the

operators A(t), B(t), and A

j

(t) = A(t)|
D

j

(t) , Bj(t) = B(t)|
D

j

(t) : D
j

(t)→Y

j

(t),

j= 1,2, are su
h that A

2

(t) = 0, and there exist A

−1
1

(t) and B−1
2

(t) if

D

1

(t) 6= {0}, D
2

(t) 6= {0} respe
tively (D

2

(t) =KerA(t)∩D, Y
1

(t) =A(t)D)

A(t)=A

1

(t)+̇A
2

(t), B(t)=B

1

(t)+̇B
2

(t) : D
1

(t)+̇D
2

(t)→ Y

1

(t)+̇Y
2

(t) (13)

[Rutkas A.G., Vlasenko L.A. Existen
e of solutions of degenerate nonlinear di�erential

operator equations, Nonlinear Os
illations, 2001℄
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For ea
h t ∈ [t+,∞) the proje
tors 
an be determined by the formulas

[Rutkas A.G., Vlasenko L.A. Nonlinear Os
illations, 2001℄

P

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

R(λ ,t)A(t)dλ , P

2

(t) = I

X

−P

1

(t),

Q

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

A(t)R(λ ,t)dλ , Q

2

(t) = I

Y

−Q

1

(t).
(14)

and the auxiliary operator G(t) =A(t)+B(t)P
2

(t) : D→Y has the bounded

inverse G

−1(t) ∈ (Y,X).
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Let X=Y =D= Rn

.

For ea
h t any x ∈ Rn


an be uniquely represented in the form

x= x

p

1

(t)+x

p

2

(t), x

p

i

(t) = P

i

(t)x ∈ X

i

(t).

The DAE (1) [A(t)x(t)]′+B(t)x(t) = f(t,x(t)) is redu
ed to the equivalent system

[P
1

(t)x(t)]′=
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]
P

1

(t)x(t)+G

−1(t)Q
1

(t)f(t,x(t)),

G

−1(t)Q
2

(t)[f(t,x(t))−A

′(t)P
1

(t)x(t)]−P

2

(t)x(t) = 0 or

x

′
p

1

(t) =
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]
x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x), (15)

G

−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]−x

p

2

(t) = 0. (16)

Introdu
e the manifold

L

t+ = {(t,x) ∈ [t+,∞)×R
n |Q

2

(t)[B(t)x+A

′(t)P
1

(t)x− f(t,x)] = 0}. (17)

The 
onsisten
y 
ondition (t
0

,x
0

) ∈ L

t+ for the initial point (t
0

,x
0

) is one of

the ne
essary 
onditions for the existen
e of a solution of the initial value problem

(1), (3).

V

′
(15)

(t,x
p

1

(t)) = ∂V
∂t

(t,x
p

1

(t))+
(

∂V
∂z

(t,x
p

1

(t)),
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+

B(t)]
]
x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x
p

1

(t)+x

p

2

(t))
)
is the derivative of the fun
tion V(t,z)

along the traje
tories of the equation (15), where V(t,z) is a 
ontinuously di�erentiable

and positive de�nite s
alar fun
tion.
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Main results:

Theorems on the existen
e and uniqueness of global solutions

Some advantages: the restri
tions of the type of the global Lips
hitz


ondition (in
luding 
ontra
tive mapping) are not used.

Theorem on the Lagrange stability of the DAE (the boundedness of

solutions)

Theorem on the Lagrange instability of the DAE (solutions have �nite

es
ape time)

Theorem on the ultimate boundedness (dissipativity) of the DAE (the

ultimate boundedness of solutions)

Theorems on the Lyapunov stability and instability of the equilibrium

state of the DAE

Theorems on asymptoti
 stability and asymptoti
 stability in the large

of the equilibrium state (
omplete stability of the DAE)

Numeri
al methods

The obtained theorems were used for the study of 
ertain mathemati
al models of

ele
tri
al 
ir
uits with nonlinear and time-varying elements.
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The IVP (1), (3):

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(t
0

) = x

0

.

De�nitions

Let f(t,0) ≡ 0 and f : [t+,∞)×U

x

R

(0)→ Rn

, where

U

x

R

(0) = {x ∈R
n | ‖x‖< R}.

An equilibrium position (a stationary solution) x∗(t)≡ 0 of the DAE (1)

(f(t,0) ≡ 0) is 
alled Lyapunov stable, or simply stable, if for ea
h ε > 0 (ε <R)

and ea
h t

0

∈ [t+,∞) there exists a number δ = δ (ε,t
0

)> 0 (δ ≤ ε) su
h that for

any 
onsistent initial point (t
0

,x
0

) satisfying the 
ondition ‖x
0

‖< δ there exists a

global solution x(t) of the IVP (1), (3) and this solution satis�es the inequality

‖x(t)‖< ε for all t ∈ [t
0

,∞).

If, in addition, there exists δ̃ = δ̃ (t
0

)> 0 (δ̃ ≤ δ ) su
h that for ea
h solution x(t)

with an initial point (t
0

,x
0

) satisfying the 
ondition ‖x
0

‖< δ̃ the requirement

lim
t→∞

x(t) = 0 is ful�lled, then x∗(t)≡ 0 is 
alled asymptoti
ally Lyapunov stable,

or simply asymptoti
ally stable.

If in the previous de�nition the number δ is independent of t

0

, then the solution

is 
alled uniformly Lyapunov stable or uniformly stable (on [t+,∞)).
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An equilibrium position x∗(t)≡ 0 of the DAE (1) (f(t,0) ≡ 0) is 
alled

Lyapunov unstable, or simply unstable, if for some ε > 0 (ε < R), t

0

∈ [t+,∞)
and any δ > 0 there exist a solution xδ (t) of the IVP (1), (3) and a time moment

t

1

> t

0

su
h that ‖x
0

‖< δ and ‖xδ (t1)‖ ≥ ε.

Let f(t,0) ≡ 0 and f : [t+,∞)×Rn → Rn

.

If the equilibrium position x∗(t)≡ 0 of the DAE (1) (f(t,0) ≡ 0) is asymptoti
ally

stable and, moreover, for ea
h point (t
0

,x
0

) ∈ L
t+ there exists a global solution

x(t) of the IVP (1), (3) and lim
t→∞

x(t) = 0, then x∗(t)≡ 0 is 
alled asymptoti
ally

stable in the large, and the DAE is 
alled 
ompletely stable or asymptoti
ally

stable.

Remark. Sin
e the Lagrange instability of a solution implies its Lyapunov

instability, the theorems on the Lagrange instability of DAEs 
an also be treated

as Lyapunov instability theorems.

Asymptoti
 stability in the large for expli
it ODEs was 
onsidered in

[Krasovsky N.N. Some problems of the theory of stability of motion, 1959℄.
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B

r

1

(0) = {z ∈ R
n | ‖z‖ ≤ r

1

},

B

x

p

1

,x
p

2

r

1

,r
2

(0) = {x ∈ R
n | ‖x

p

i

(t)‖ ≤ r

i

,x
p

i

(t) = P

i

(t)x, i = 1,2}.
(18)

Theorem 6 (Lyapunov stability and asymptoti
 stability of equilibrium position

of the DAE). Let f ∈C([t+,∞)×U

x

R

(0),Rn), f(t,0)≡ 0,

∂ f/∂x ∈ C([t+,∞)×U

x

R

(0),L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)), and the pen
il

λA(t)+B(t) satisfy (11), where C

2

∈C1([t+,∞),(0,∞)). Assume that for ea
h

t∗ ∈ [t+,∞) and x∗
p

1

(t∗) = 0, x

∗
p

2

(t∗) = 0 the operator

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible. Then the following statements are true:

1. Let there exist numbers r

1

,r
2

> 0, r

1

+ r

2

< R, and a positive de�nite

fun
tion V ∈C1([t+,∞)×B

r

1

(0),R) su
h that for all t ∈ [t+,∞), x ∈ B
x

p

1

,x
p

2

r

1

,r
2

(0)

the following inequality holds:

V

′
(15)

(t,x
p

1

(t)) ≤ 0. (19)

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is Lyapunov stable.
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2. Let there exist numbers r

1

,r
2

> 0, r

1

+ r

2

<R, and positive de�nite fun
tions

V ∈ C

1([t+,∞)×B

r

1

(0),R), W ∈ C(B
r

1

(0),R), and U ∈C(B
r

1

(0),R) su
h that

V(t,z)≤W(z) for all t ∈ [t+,∞), z ∈ B
r

1

(0), and

V

′
(15)

(t,x
p

1

(t))≤−U
(
x

p

1

(t)
)

(20)

for all t ∈ [t+,∞), x ∈ B

x

p

1

,x
p

2

r

1

,r
2

(0), x
p

1

(t) 6= 0;

also, let

G

−1(t)Q
2

(t)[f(t,P
1

(t)x+P

2

(t)x)−A

′(t)P
1

(t)x]→ 0

as x→ 0 uniformly in t on [T,∞) for some T> t+. (21)

Then the equilibrium position x∗(t)≡0 of the DAE (1) is asymptoti
ally

Lyapunov stable.
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Theorem 7 (Lyapunov instability of equilibrium position of the DAE).

Let f ∈C([t+,∞)×U

x

R

(0),Rn), f(t,0)≡ 0, ∂ f/∂x ∈ C([t+,∞)×U

x

R

(0),L(Rn)),

A,B ∈C1([t+,∞),L(Rn)), and the pen
il λA(t)+B(t) satisfy (11), where

C

2

∈C1([t+,∞),(0,∞)). Assume that for ea
h t∗ ∈ [t+,∞) and x∗
p

1

(t∗) = 0,

x

∗
p

2

(t∗) = 0 the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible. Let there exist numbers T≥ t+ and r

1

,r
2

> 0, r

1

+ r

2

< R, and a

fun
tion V ∈C1([T,∞)×B

r

1

(0),R) su
h that

1. V(t,z)→ 0 uniformly in t on [T,∞) as ‖z‖→ 0;

2. there exists a positive fun
tion U ∈ C(B
r

1

(0),[0,∞)) su
h that

V

′
(15)

(t,x
p

1

(t))≥U

(
x

p

1

(t)
)
> 0 or V

′
(15)

(t,x
p

1

(t))≤−U
(
x

p

1

(t)
)
< 0 (22)

for all t ∈ [T,∞), x ∈ B
x

p

1

,x
p

2

r

1

,r
2

(0), x
p

1

(t) 6= 0;

3. for ea
h ∆
1

> 0 and ea
h ∆
2

> 0, ∆
i

≤ r

i

, there exist x

p

1

(T) 6= 0 and x

p

2

(T)

su
h that ‖x
p

i

(T)‖ < ∆
i

, i= 1,2, and V(T,x
p

1

(T))V′
(15)

(T,x
p

1

(T))> 0

(i.e., the sign of the fun
tion V 
oin
ides with the sign of the derivative V

′
(15)

at

(T,x
p

1

(T))).

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is Lyapunov

unstable.
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Theorem 8 (asymptoti
 stability in the large or 
omplete stability of the DAE).

Let f ∈C([t+,∞)×Rn,Rn), f(t,0) ≡ 0, ∂ f/∂x ∈ C([t+,∞)×Rn,L(Rn)),

A,B ∈C1([t+,∞),L(Rn)), the pen
il λA(t)+B(t) satisfy (11), where

C

2

∈C1([t+,∞),(0,∞)). Let the 
onditions 1), 2) of Theorem 1 or 1), 2) of

Theorem 2 (on the global solvability), as well as 
ondition (21), be satis�ed.

Assume that there exist positive de�nite fun
tions V ∈ C

1([t+,∞)×Rn,R),

W ∈ C(Rn,R) and U ∈ C(Rn,R) su
h that

1. V(t,z) ≤W(z) for all t ∈ [t+,∞), z ∈ Rn

;

2. V(t,z)→ ∞ uniformly in t on [t+,∞) as ‖z‖→ ∞;

3. for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , xp
1

(t) 6= 0 (x

p

i

(t) = P

i

(t)x, i= 1,2), the

inequality (20) holds.

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is asymptoti
ally

stable in the large (the DAE (1) is 
ompletely stable).
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The 
onditions 1), 2) of Theorem 1 (on the global solvability):

1) for ea
h t ∈ [t+,∞) and ea
h x

p

1

(t) ∈X
1

(t) there exists a unique

x

p

2

(t) ∈ X

2

(t) su
h that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for ea
h t∗ ∈ [t+,∞), x∗
p

i

(t∗) ∈ X

i

(t∗), i= 1,2, su
h that

(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗)) ∈ L

t+ the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible;

The 
onditions 1), 2) of Theorem 2 (on the global solvability):

1) for ea
h t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) there exists x

p

2

(t) ∈ X

2

(t) su
h that

(t,x
p

1

(t)+x

p

2

(t)) ∈ L
t+ ;

2) for ea
h t∗ ∈ [t+,∞), x∗
p

1

(t∗) ∈ X

1

(t∗), x
i

p

2

(t∗) ∈X2

(t∗) su
h that

(t∗,x
∗
p

1

(t∗)+x

i

p

2

(t∗)) ∈ L

t+ , i= 1,2, the operator fun
tion Φ
t∗,x∗

p

1

(t∗)(xp2(t∗))

de�ned by Φ
t∗,x∗

p

1

(t∗) : X
2

(t∗)→ L(X
2

(t∗),Y2

(t∗)),Φ
t∗,x∗

p

1

(t∗)(xp2(t∗)) =[
∂

∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is basis invertible on

[x1
p

2

(t∗),x
2

p

2

(t∗)].
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Outlooks

1

It is planned to extend the obtained results to the 
ase when X,Y are Bana
h

spa
es, f : [t+,∞)×X→Y and A(t),B(t) : X→Y (t ∈ [t+,∞)) are 
losed

linear operators with the domains D

A(t), DB(t), D=D

A(t)∩DB(t) 6= {0}.

In this 
ase we will require that A(t), B(t) be strongly 
ontinuously

di�erentiable on [t+,∞) (i.e., for ea
h d ∈D the fun
tions A(t)d, B(t)d be


ontinuously di�erentiable on [t+,∞)).

2

It is planned to 
onsider semilinear time-varying DAEs of index higher than 1.

A regular pen
il λA(t)+B(t) is a regular pen
il of index ν (ν ∈N) if there

exist fun
tions C

1

,C
2

: [t+,∞)→ (0,∞) su
h that for every t ∈ [t+,∞)

‖R(λ ,t)‖ ≤ C

1

(t)|λ |ν−1, |λ | ≥ C

2

(t). (23)

[Rutkas A.G., Vlasenko L.A. Existen
e of solutions of degenerate nonlinear

di�erential operator equations, Nonlinear Os
illations, 2001℄

Then for ea
h t ∈ [t+,∞) there exist the two pairs of mutually 
omplementary

proje
tors P

j

(t), Q
j

(t), j= 1,2, (14) whi
h generate the dire
t

de
ompositions of D and Y (12) su
h that the operators A(t), B(t) have the

blo
k representations (13), where A

−1
1

(t) and B−1
2

(t) exist.

In general, the order of pole of the resolvent (A(t)+ µB(t))−1 at the point

µ = 0 is 
alled the index of the regular pen
il λA(t)+B(t).
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Thank you for your attention!
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