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Consider implicit ordinary differential equations (ODEs) of the form
d

e AOxO]+B(0)x(t) =£(t.x(t),  t € [t1.00), (1)

A(t)%x(t) +B(t)x(t) = £(t,x(t)), (2)

where t4 >0, A(t),B(t) (t € [t+,)) are closed linear operators from X to Y
with the domains D), Dg(y), D =Da) N Dg() # {0}, X,Y are Banach spaces,
f:[ty,0)xX =Y.

The time-varying operators A(t), B(t) can be degenerate.

The differential equations (DEs) (1) and (2) with a degenerate (for
some t) operator A(t) are called time-varying (nonautonomous)
degenerate DEs or time-varying differential-algebraic
equations (DAES). In the terminology of DAEs, equations of the form (1),
(2) are commonly referred to as semilinear.

We study the initial value problem (the Cauchy problem) for the DAEs (1), (2)
with the initial condition

X(to) = Xy. (3)
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Fields of application of the theory of DAEs are control theory,
radioelectronics, cybernetics, mechanics, robotics technology, economics, ecology
and chemical kinetics.

In particular, semilinear DAEs are used in modelling

@ transient processes in electrical circuits

gas flow in networks

dynamics of neural networks
o dynamics of complex mechanical and technical systems (e.g., robots)

multi-sectoral economic models

kinetics of chemical reactions

Notice that any type of a PDE can be represented as a DAE in
infinite-dimensional spaces (an abstract DAE) and, possibly, a complementary
boundary condition.
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Model of a gas flow for a single pipe
We consider the mathematical model of a gas pipeline which consists of the
isothermal Euler equations of the form
Py = —¢x, (4)
@y = —px — gPhx — 0.5AD " p|g|p " (5)

and the equation of state for a real gas in the form

p = RTopz(p), (6)
e x€[0,L], t € [0,t1) C [0,00], where [to,t1) is the time interval, L < e is the
pipe length and Ty is the temperature

o p=p(tx), ¢ =0(t,x) (¢ :=pv, v is the velocity) and p = p(t,x) are
respectively the density, flow rate and pressure

g is the gravitational constant, and R is the specific gas constant
A is the pipe friction coefficient, and D is the pipe diameter

h = h(x) is the height profile of the pipe over ground

z=z(p) is the compressibility factor

[P. Benner, S. Grundel, C. Himpe, C. Huck, T. Streubel, C. Tischendorf. Gas
Network Benchmark Models, 2018]



1 0 0 0 —i 0 0
Denote A={0 1 0),B=[—-gh, 0 —4&| f(u)= _%% and
0 00 0 0 -1 RTopz(p)
)-

u=(p,p,p)T. Then we can write the system (4)—(6) as
A Su(t) + But) = F(u(t), ™)
where u = u(t)(x) = (p(t,x),0(t,x),p(t,x))T, x € [0,L], t € [0,T] C [0,t1). The
initial condition has the form:
u(0)=uop,  w=uo(x)=(p(0,x),0(0.x),p(0x)", x€[O.L],  (8)

where p(0,x) is chosen so as to satisfy the equation (6) for t =0, x € [0,L]. We
will assume that u(t,x) satisfies suitable boundary conditions, for example,

¢(t,0) = @i(t), p(t,0) =pi(t), te[0,T], (9)

i.e, u(t)(0) =u(t) = (p(t,0),¢(t),p1(t))T, where @i(t) and p;(t) are given.
Then we consider the IVP (1), (3), where X =Y =L, and
A(t),B(t): H§[0,L] = {u(x) € HY[0,L] | u(t)(0) = w(t)} — Lo for each t € [0,t1).
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[P. Benner, S. Grundel, C. Himpe, C. Huck, T. Streubel, C. Tischendorf. Gas
Network Benchmark Models, 2018]

[Azevedo-Perdicoulis, T.-P., Jank, G. Modelling aspects of describing a gas
network through a DAE system. 2007]

The gas network is considered to be described by a connected finite graph
G = (V,E,y), where V denotes a set of vertices with |V| =n, and E denotes a set
of edges with |E| =m. The mapping y: E — V x V is called the incidence map,
where y; (e) = vy is the initial vertex and ys(e) = v, is the final vertex.

We define a flow ¢: E — R and a pressure-drop p: E — R on every edge, and a
nodal-pressure ®: V — R and a nodal-flow F: V — R on every vertex.

The Kirchhoff First Law (KFL) says that the flow rate vanishes at any vertex of
the graph: The Kirchhoff Second Law (KSL) says that the pressure drop vanishes
at every fundamental circuit of the graph.

Notice that the network may comprise valves, reservoirs, compressor stations,
supplying sources, and regulators.

The isothermal Euler equations are linearised around the operation levels
(ps,9«), whence we set p = p,+Ap and @ = @, + A, with Ap and A¢ as the
deviations from the pressure-drop and flow, respectively, from the reference values
px and Q.
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Discretizing the gas net with respect to the space variable x, we obtain the gas
network model in the form of a DAE of a type

%(Au) = Bu+f(t,u), (10)
where u = (A@,®P,uq,up)T, uy denotes a control device controlling the flow in
some edges by a “flow”, up, denotes a control device controlling the flow in some
edges by a “pressure” and A is a certain degenerate matrix. The gas network
model also may include the parameters denoting control devices controlling the
pressure in the edges or nodes either through flow or pressure.
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Assume that the characteristic operator pencil AA(t)+B(t) (A €Cisa
parameter), associated with the linear part of the DAE (1) or (2), is a regular
pencil of index not higher than 1: for each t >t the pencil AA(t) 4+ B(t) be
regular and there exist functions Cj : [t4,00) — (0,00), Ca: [t4,00) — (0,00) such
that for every t € [t ,0) the pencil resolvent R(1,t) = (AA(t) + B(t)) ! satisfies
the constraint

IR(A,6)[] < Ci(t), [A]=Cat). (11)

Then for each t € [t o), there exist the two pairs of mutually complementary

projectors
Pj(t)I D— Dj(t) and Qj(t)Z Y — Yj(t), j=12,

which generate the direct decompositions
D =D;(t)+D2(t), Y=Y;(t)+Y2(t) such that (12)
the pair of subspaces X;(t), Y1(t) and X2(t), Yo(t) are invariant under the
operators A(t), B(t), and A;(t) = A(t)|Dj<t) , Bj(t) = B(t)|Dj(t) : Dj(t) = Y;(t),
j=1,2, are such that A,(t) =0, and there exist A;*(t) and B;*(t) if
D, (t) # {0}, D2(t) # {0} respectively (D2(t) =KerA(t)ND, Y;(t) = A(t)D)
A(t)=A1(t)+Ax(t), B(t)=By(t)+B2(t): Di(t)+Da(t) = Y1(t)+Yo(t) (13)
[Rutkas A.G., Vlasenko L.A. Existence of solutions of degenerate nonlinear differential
operator equations, Nonlinear Oscillations, 2001]
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For each t € [t,) the projectors can be determined by the formulas
[Rutkas A.G., Vlasenko L.A. Nonlinear Oscillations, 2001]

Pl(t):%ﬁ ]f R(A,6)A(t)dA, Pa(t) = Ix — Py (t),
AI=Cat)

(14)
Qu(t) = — ]f AR AL, Qa(t) =Ty — Qu(t).

and the auxiliary operator G(t) = A(t) + B(t)P2(t): D = Y has the bounded
inverse G (t) € (Y,X).
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Let X=Y=D=R".
For each t any x € R™ can be uniquely represented in the form

x = Xpy (t) +Xp, (1), xp;(t) = Pi(t)x € Xi(t).
The DAE (1) [A(t)x(t)]" + B(t)x(t) = f(t,x(t)) is reduced to the equivalent system

G~ 1( )Q1(t)[A'(t) +B(t)]] P (t ) (t) + G () Qu(t)f (t.x(t)),

(£)P1(t)x(t)] — P2 (t)x(t) = or
Xp, (8) = [P1(t) = GTH(E)Qu (6)[A'(t) + B(6)]]xp, (t) + G (1) Qu (£)E(t,x),  (15)
Gil(t)Q2(t)[f(t Xp, (t) +%p, (1)) — ( )Xm (t)] — Xp2( )=0. (16)

Introduce the manifold

Li, = {(t,x) € [t4,00) x R™ | Q2(t)[B(t)x + A'(t)P1 (t)x — f(t,x)] =0}.  (17)
The consistency condition (to,xo) € L¢, for the initial point (to,x0) is one of
the necessary conditions for the existence of a solution of the initial value problem

(1). (3).
Vi) (651 () = B (659, (6) + (52 (txp, (6)), [P (6) — G (6)Qu (6)[A/ (1) +
B(t)]]xp, (t) + G (t) Q1 (6)f (t,xp, (t) +xp, (t))) is the derivative of the function V(t,z)

along the trajectories of the equation (15), where V(t,z) is a continuously differentiable
and positive definite scalar function.
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Main results:

o Theorems on the existence and uniqueness of global solutions

Some advantages: the restrictions of the type of the global Lipschitz
condition (including contractive mapping) are not used.

o Theorem on the Lagrange stability of the DAE (the boundedness of
solutions)

o Theorem on the Lagrange instability of the DAE (solutions have finite
escape time)

e Theorem on the ultimate boundedness (dissipativity) of the DAE (the
ultimate boundedness of solutions)

o Theorems on the Lyapunov stability and instability of the equilibrium
state of the DAE

o Theorems on asymptotic stability and asymptotic stability in the large
of the equilibrium state (complete stability of the DAE)

@ Numerical methods

The obtained theorems were used for the study of certain mathematical models of
electrical circuits with nonlinear and time-varying elements.
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The IVP (1), (3): %[A(t)x(t)]—i—B(t)x(t):f(t,x(t)), x(to) = %o.

Definitions

Let £(t,0) =0 and f: [t4,00) x UK (0) — R", where
UR(0) = {x e R" | [|x]| <R}.

An equilibrium position (a stationary solution) x,(t) =0 of the DAE (1)
(f(t,0) =0) is called Lyapunov stable, or simply stable, if for each € >0 (¢ <R)
and each tg € [t4,00) there exists a number 6 = §(€,t9) >0 (6 < €) such that for
any consistent initial point (tg,xo) satisfying the condition ||xg|| < & there exists a
global solution x(t) of the IVP (1), (3) and this solution satisfies the inequality
[Ix(t)|]| < € for all t € [to,0).
If, in addition, there exists 0 = §(tp) > 0 (6 < &) such that for each solution x(t)
with an initial point (tg,xo) satisfying the condition ||xq|| < J the requirement

tlim x(t) = 0 is fulfilled, then x,(t) =0 is called asymptotically Lyapunov stable,
—yo0
or simply asymptotically stable.

If in the previous definition the number § is independent of tg, then the solution
is called uniformly Lyapunov stable or uniformly stable (on [t ,)).
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An equilibrium position x.(t) = 0 of the DAE (1) (f(t,0) =0) is called
Lyapunov unstable, or simply unstable, if for some € > 0 (¢ <R), to € [t4,)
and any 8 > 0 there exist a solution x5(t) of the IVP (1), (3) and a time moment
t1 > to such that ||xo|| < 0 and ||xs(t1)| > €.

Let £(t,0) =0 and f: [t4,00) x R* — R™,
If the equilibrium position x.(t) = 0 of the DAE (1) (f(t,0) =0) is asymptotically
stable and, moreover, for each point (tg,xo) € L¢, there exists a global solution
x(t) of the IVP (1), (3) and tlgn x(t) =0, then x,(t) =0 is called asymptotically
stable in the large, and the DAE is called completely stable or asymptotically
stable.

Remark. Since the Lagrange instability of a solution implies its Lyapunov
instability, the theorems on the Lagrange instability of DAEs can also be treated

as Lyapunov instability theorems.

Asymptotic stability in the large for explicit ODEs was considered in
[Krasovsky N.N. Some problems of the theory of stability of motion, 1959].
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By, (0) = {z € R" [ [|z]| <11},

Xpq,X n . (18)
Brlky 72 (0) = {x € R™ [ [|xp; (8)]] < i, xp; (t) = Pi(t)x,i = 1,2}

Theorem 6 (Lyapunov stability and asymptotic stability of equilibrium position
of the DAE). Let f € C([t4,00) x UK (0),R"), £(t,0) =0,
df/dx € C([t4,) x UX(0),L(R")), A,B € C([t,%),L(R")), and the pencil
AA(t) +B(t) satisfy (11), where Cy € C' ([t ,%0),(0,%0)). Assume that for each
ti € [t4,00) and x; (t) =0, x,_ (t+) = 0 the operator
b (6) 3, (6) ° Xa(ts) = Yo (tu),
Py s 1)y (1) = | 2 [Qa (L 5, (1) 35, (6))] = B(t:)| Pa(t.), is
invertible. Then the following statements are true:

1. Let there exist numbers ry,r> >0, r; +12 < R, and a positive definite
function V € C' ([t ,o) x By, (0),R) such that for all t € [t ), x € By %, P2(0)
the following inequality holds:

Vé15)(tvxp1 (t)) <0. (19)

Then the equilibrium position x.(t) =0 of the DAE (1) is Lyapunov stable.
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2. Let there exist numbers ry,r> > 0, r; + 12 < R, and positive definite functions
V € C!([t4,) x By, (0),R), W € C(B,, (0),R), and U € C(B,, (0),R) such that
V(t,z) < W(z) for all t € [t4,), z € B, (0), and

Vias) (65, (£)) < —U(xp, (1)) (20)

for all t € [ty,00), x € BiPL 2 (0), xp, (t) # 0;
also, let

L) Q2 () [E(,P1 (t)x+Pa(t)x) — A'(6)P1(t)x] — 0

as x — 0 uniformly in t on [T,e) for some T >t,. (21)

Then the equilibrium position x,(t) =0 of the DAE (1) is asymptotically
Lyapunov stable.
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Theorem 7 (Lyapunov instability of equilibrium position of the DAE).
Let f € C([t4,00) x UK(0),R"), £(t,0) =0, 9f/dx € C([t+,00) x UK (0),L(R")),
A,B € C!([t4+,),L(R")), and the pencil LA(t)+ B(t) satisfy (11), where
Cy € C([t4,%0),(0,00)). Assume that for each t. € [t ) and x5 (t.) =0,
x5, (t«) = 0 the operator @ (62 () Xo(ts) = Ya(ty),

o s, () (1) = | 2 [Qa (L F(6 5, (1) 5, (6))] = B(t.)| Pa(t.). is
invertible. Let there exist numbers T >t, and ry,r2> >0, r;1 +1r2 <R, and a
function V € C'([T,e) x B,, (0),R) such that

1. V(t,z) — 0 uniformly in t on [T,e) as ||z|| = 0;

2. there exists a positive function U € C(B, (0),[0,00)) such that

V'(15)(t,xp1(t)) > U(xp, (t)) >0 or Vé15)(t,xp1(t)) < —U(xp, (t)) <0 (22)

for all t € [T,e0), x € ByPk, P2(0), xp, (t) #0;

3. for each Ay >0 and each Ay > 0, A; <r3j, there exist xp, (T) # 0 and xp, (T)
such that [|xp, (T)|| < A;, i=1,2, and V(T ,xp, (T)) ’(15)(T,xp1(T)) >0
(i.e., the sign of the function V coincides with the sign of the derivative VélS) at
(Txp, (T))).
Then the equilibrium position x.(t) =0 of the DAE (1) is Lyapunov
unstable.



Theorem 8 (asymptotic stability in the large or complete stability of the DAE).
Let f € C([t4,o) x R®,R?), £(t,0) =0, 9f/dx € C([t4,o) x R* L(R")),
A, B € C'([t4,),L(R")), the pencil 2A(t) + B(t) satisfy (11), where
Cy € C([t+,%),(0,0)). Let the conditions 1), 2) of Theorem 1 or 1), 2) of
Theorem 2 (on the global solvability), as well as condition (21), be satisfied.
Assume that there exist positive definite functions V € C!([t,00) x R®,R),
W e C(R*,R) and U € C(R",R) such that

1. V(t,z) < W(z) for all t € [t4,00), z € R";

2. V(t,2) — oo uniformly in t on [t4,) as ||z]| — c;

3. for all (t,xp, (t) +xp,(t)) € Lg,, xp, (t) # 0 (xp;(t) =Pi(t)x, i=1,2), the
inequality (20) holds.
Then the equilibrium position x.(t) =0 of the DAE (1) is asymptotically
stable in the large (the DAE (1) is completely stable).
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The conditions 1), 2) of Theorem 1 (on the global solvability):
1) for each t € [t4,%0) and each x,, (t) € X; (t) there exists a unique
Xps (t) € X2(t) such that (t,xp, (t) +xp, (t)) € Ly ;
2) for each t. € [t,), x5 (t+) € Xi(t«), i = 1,2, such that
(b5, (6) +5, (t)) € Ly, the operator @ . ;) : Xo(te) = Ya(ts),

#)Xpg (te) -
o ()3 (1) = | 3 [Qa (L6 5, (1) 35, (6))] = B(t:)| Pa(t.), is

invertible;

The conditions 1), 2) of Theorem 2 (on the global solvability):

1) for each t € [t4,), xp, (t) € X1 (t) there exists x,, (t) € Xa(t) such that
(t%py (t) +xpy (t)) € L ;

2) for each t. € [t4,0), x} (tx) € Xy (ts), xb,, (t4) € Xp(ts) such that
(e, x5 (ta) + x5, (b)) € Lt+, i=1,2, the operator function @ . (5. (xpy (t))
defined by Py (1.): Xalt) = L(Xa(t.).Ya(t). @y, ) (g () =

2 Q) (b5, (6) +Xpy ()] — B(ts) | P2(ts), is basis invertible on

[xp, (£2)x5, (6)].
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Outlooks
@ It is planned to extend the obtained results to the case when XY are Banach
spaces, f: [t4,0) x X =Y and A(t),B(t): X =Y (t € [t+,)) are closed
linear operators with the domains D (y), Dg(), D = D) NDg(y) # {0}
In this case we will require that A(t), B(t) be strongly contmuously
differentiable on [t,e) (i.e., for each d € D the functions A(t)d, B(t)d be
continuously differentiable on [t ,e)).

@ It is planned to consider semilinear time-varying DAEs of index higher than 1.

A regular pencil AA(t) 4+ B(t) is a regular pencil of index v (v € N) if there
exist functions Cy,Ca: [t4,00) — (0,0) such that for every t € [t ,00)

IRA.6)[ < CL®)IA"", A= Ca(h). (23)

[Rutkas A.G., Vlasenko L.A. Existence of solutions of degenerate nonlinear
differential operator equations, Nonlinear Oscillations, 2001]

Then for each t € [t ,o0) there exist the two pairs of mutually complementary
projectors P;(t), Q;(t), j =1,2, (14) which generate the direct
decompositions of D and Y (12) such that the operators A(t), B(t) have the
block representations (13), where A;'(t) and B, (t) exist.

In general, the order of pole of the resolvent (A(t)+uB(t)) ! at the point

1 =0 is called the index of the regular pencil AA(t) 4+ B(t).
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Thank you for your attention!
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