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Consider impliit ordinary di�erential equations (ODEs) of the form

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), t ∈ [t+,∞), (1)

A(t)
d

dt

x(t)+B(t)x(t) = f(t,x(t)), (2)

where t+ ≥ 0, A(t),B(t) (t ∈ [t+,∞)) are losed linear operators from X to Y

with the domains D

A(t), DB(t), D=D

A(t)∩DB(t) 6= {0}, X,Y are Banah spaes,

f : [t+,∞)×X→Y.

The time-varying operators A(t), B(t) an be degenerate.

The di�erential equations (DEs) (1) and (2) with a degenerate (for

some t) operator A(t) are alled time-varying (nonautonomous)

degenerate DEs or time-varying di�erential-algebrai

equations (DAEs). In the terminology of DAEs, equations of the form (1),

(2) are ommonly referred to as semilinear.

We study the initial value problem (the Cauhy problem) for the DAEs (1), (2)

with the initial ondition

x(t
0

) = x

0

. (3)
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Fields of appliation of the theory of DAEs are ontrol theory,

radioeletronis, ybernetis, mehanis, robotis tehnology, eonomis, eology

and hemial kinetis.

In partiular, semilinear DAEs are used in modelling

transient proesses in eletrial iruits

gas �ow in networks

dynamis of neural networks

dynamis of omplex mehanial and tehnial systems (e.g., robots)

multi-setoral eonomi models

kinetis of hemial reations

Notie that any type of a PDE an be represented as a DAE in

in�nite-dimensional spaes (an abstrat DAE) and, possibly, a omplementary

boundary ondition.
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Model of a gas �ow for a single pipe

We onsider the mathematial model of a gas pipeline whih onsists of the

isothermal Euler equations of the form

ρ
t

=−ϕ
x

, (4)

ϕ
t

=−p
x

−gρh
x

−0.5λD−1ϕ |ϕ |ρ−1
(5)

and the equation of state for a real gas in the form

p= RT

0

ρz(p), (6)

x ∈ [0,L], t ∈ [0,t
1

)⊆ [0,∞], where [t
0

,t
1

) is the time interval, L< ∞ is the

pipe length and T

0

is the temperature

ρ = ρ(t,x), ϕ = ϕ(t,x) (ϕ := ρv, v is the veloity) and p= p(t,x) are
respetively the density, �ow rate and pressure

g is the gravitational onstant, and R is the spei� gas onstant

λ is the pipe frition oe�ient, and D is the pipe diameter

h= h(x) is the height pro�le of the pipe over ground

z= z(p) is the ompressibility fator

[P. Benner, S. Grundel, C. Himpe, C. Huk, T. Streubel, C. Tishendorf. Gas

Network Benhmark Models, 2018℄
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Denote A=



1 0 0

0 1 0

0 0 0



, B=




0 − d

dx

0

−gh
x

0 − d

dx

0 0 −1



, f(u)=




0

− λ
2D

ϕ|ϕ|
ρ

RT

0

ρz(p)




and

u= (ρ ,ϕ ,p)T. Then we an write the system (4)�(6) as:

A

d

dt

u(t)+Bu(t) = f(u(t)), (7)

where u= u(t)(x) = (ρ(t,x),ϕ(t,x),p(t,x))T, x ∈ [0,L], t ∈ [0,T]⊂ [0,t
1

). The
initial ondition has the form:

u(0) = u

0

, u

0

= u

0

(x) = (ρ(0,x),ϕ(0,x),p(0,x))T, x ∈ [0,L], (8)

where p(0,x) is hosen so as to satisfy the equation (6) for t= 0, x ∈ [0,L]. We

will assume that u(t,x) satis�es suitable boundary onditions, for example,

ϕ(t,0) = ϕ
l

(t), p(t,0) = p

l

(t), t ∈ [0,T], (9)

i.e., u(t)(0) = u

l

(t) = (ρ(t,0),ϕ
l

(t),p
l

(t))T, where ϕ
l

(t) and p
l

(t) are given.

Then we onsider the IVP (1), (3), where X=Y = L

2

and

A(t),B(t) : H
1

0

[0,L] = {u(x) ∈ H

1[0,L] | u(t)(0) = u

l

(t)} → L

2

for eah t ∈ [0,t
1

).
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[P. Benner, S. Grundel, C. Himpe, C. Huk, T. Streubel, C. Tishendorf. Gas

Network Benhmark Models, 2018℄

[Azevedo-Perdioulis, T.-P., Jank, G. Modelling aspets of desribing a gas

network through a DAE system. 2007℄

The gas network is onsidered to be desribed by a onneted �nite graph

G= (V,E,ψ), where V denotes a set of verties with |V|= n, and E denotes a set

of edges with |E|=m. The mapping ψ : E→ V×V is alled the inidene map,

where ψ
1

(e) = v

1

is the initial vertex and ψ
2

(e) = v

2

is the �nal vertex.

We de�ne a �ow ϕ : E→R and a pressure-drop p : E→R on every edge, and a

nodal-pressure Φ : V→ R and a nodal-�ow F : V→ R on every vertex.

The Kirhho� First Law (KFL) says that the �ow rate vanishes at any vertex of

the graph:The Kirhho� Seond Law (KSL) says that the pressure drop vanishes

at every fundamental iruit of the graph.

Notie that the network may omprise valves, reservoirs, ompressor stations,

supplying soures, and regulators.

The isothermal Euler equations are linearised around the operation levels

(p∗,ϕ∗), whene we set p= p∗+∆p and ϕ = ϕ∗+∆ϕ , with ∆p and ∆ϕ as the

deviations from the pressure-drop and �ow, respetively, from the referene values

p∗ and ϕ∗.
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Disretizing the gas net with respet to the spae variable x, we obtain the gas

network model in the form of a DAE of a type

∂

∂ t
(Au) = Bu+ f(t,u), (10)

where u= (∆ϕ ,Φ,u
q

,u
p

)T, u
q

denotes a ontrol devie ontrolling the �ow in

some edges by a ��ow�, u

p

denotes a ontrol devie ontrolling the �ow in some

edges by a �pressure� and A is a ertain degenerate matrix. The gas network

model also may inlude the parameters denoting ontrol devies ontrolling the

pressure in the edges or nodes either through �ow or pressure.
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Assume that the harateristi operator penil λA(t)+B(t) (λ ∈ C is a

parameter), assoiated with the linear part of the DAE (1) or (2), is a regular

penil of index not higher than 1: for eah t≥ t+ the penil λA(t)+B(t) be
regular and there exist funtions C

1

: [t+,∞)→ (0,∞), C
2

: [t+,∞)→ (0,∞) suh
that for every t ∈ [t+,∞) the penil resolvent R(λ ,t) = (λA(t)+B(t))−1 satis�es

the onstraint

‖R(λ ,t)‖ ≤ C

1

(t), |λ | ≥ C

2

(t). (11)

Then for eah t ∈ [t+,∞), there exist the two pairs of mutually omplementary

projetors

P

j

(t) : D→ D

j

(t) and Q

j

(t) : Y→ Y

j

(t), j= 1,2,

whih generate the diret deompositions

D=D

1

(t)+̇D
2

(t), Y =Y

1

(t)+̇Y
2

(t) suh that (12)

the pair of subspaes X

1

(t), Y
1

(t) and X
2

(t), Y
2

(t) are invariant under the

operators A(t), B(t), and A

j

(t) = A(t)|
D

j

(t) , Bj(t) = B(t)|
D

j

(t) : D
j

(t)→Y

j

(t),

j= 1,2, are suh that A

2

(t) = 0, and there exist A

−1
1

(t) and B−1
2

(t) if

D

1

(t) 6= {0}, D
2

(t) 6= {0} respetively (D

2

(t) =KerA(t)∩D, Y
1

(t) =A(t)D)

A(t)=A

1

(t)+̇A
2

(t), B(t)=B

1

(t)+̇B
2

(t) : D
1

(t)+̇D
2

(t)→ Y

1

(t)+̇Y
2

(t) (13)

[Rutkas A.G., Vlasenko L.A. Existene of solutions of degenerate nonlinear di�erential

operator equations, Nonlinear Osillations, 2001℄
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For eah t ∈ [t+,∞) the projetors an be determined by the formulas

[Rutkas A.G., Vlasenko L.A. Nonlinear Osillations, 2001℄

P

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

R(λ ,t)A(t)dλ , P

2

(t) = I

X

−P

1

(t),

Q

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

A(t)R(λ ,t)dλ , Q

2

(t) = I

Y

−Q

1

(t).
(14)

and the auxiliary operator G(t) =A(t)+B(t)P
2

(t) : D→Y has the bounded

inverse G

−1(t) ∈ (Y,X).
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Let X=Y =D= Rn

.

For eah t any x ∈ Rn

an be uniquely represented in the form

x= x

p

1

(t)+x

p

2

(t), x

p

i

(t) = P

i

(t)x ∈ X

i

(t).

The DAE (1) [A(t)x(t)]′+B(t)x(t) = f(t,x(t)) is redued to the equivalent system

[P
1

(t)x(t)]′=
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]
P

1

(t)x(t)+G

−1(t)Q
1

(t)f(t,x(t)),

G

−1(t)Q
2

(t)[f(t,x(t))−A

′(t)P
1

(t)x(t)]−P

2

(t)x(t) = 0 or

x

′
p

1

(t) =
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]
x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x), (15)

G

−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]−x

p

2

(t) = 0. (16)

Introdue the manifold

L

t+ = {(t,x) ∈ [t+,∞)×R
n |Q

2

(t)[B(t)x+A

′(t)P
1

(t)x− f(t,x)] = 0}. (17)

The onsisteny ondition (t
0

,x
0

) ∈ L

t+ for the initial point (t
0

,x
0

) is one of

the neessary onditions for the existene of a solution of the initial value problem

(1), (3).

V

′
(15)

(t,x
p

1

(t)) = ∂V
∂t

(t,x
p

1

(t))+
(

∂V
∂z

(t,x
p

1

(t)),
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+

B(t)]
]
x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x
p

1

(t)+x

p

2

(t))
)
is the derivative of the funtion V(t,z)

along the trajetories of the equation (15), where V(t,z) is a ontinuously di�erentiable

and positive de�nite salar funtion.
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Main results:

Theorems on the existene and uniqueness of global solutions

Some advantages: the restritions of the type of the global Lipshitz

ondition (inluding ontrative mapping) are not used.

Theorem on the Lagrange stability of the DAE (the boundedness of

solutions)

Theorem on the Lagrange instability of the DAE (solutions have �nite

esape time)

Theorem on the ultimate boundedness (dissipativity) of the DAE (the

ultimate boundedness of solutions)

Theorems on the Lyapunov stability and instability of the equilibrium

state of the DAE

Theorems on asymptoti stability and asymptoti stability in the large

of the equilibrium state (omplete stability of the DAE)

Numerial methods

The obtained theorems were used for the study of ertain mathematial models of

eletrial iruits with nonlinear and time-varying elements.
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The IVP (1), (3):

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(t
0

) = x

0

.

De�nitions

Let f(t,0) ≡ 0 and f : [t+,∞)×U

x

R

(0)→ Rn

, where

U

x

R

(0) = {x ∈R
n | ‖x‖< R}.

An equilibrium position (a stationary solution) x∗(t)≡ 0 of the DAE (1)

(f(t,0) ≡ 0) is alled Lyapunov stable, or simply stable, if for eah ε > 0 (ε <R)

and eah t

0

∈ [t+,∞) there exists a number δ = δ (ε,t
0

)> 0 (δ ≤ ε) suh that for

any onsistent initial point (t
0

,x
0

) satisfying the ondition ‖x
0

‖< δ there exists a

global solution x(t) of the IVP (1), (3) and this solution satis�es the inequality

‖x(t)‖< ε for all t ∈ [t
0

,∞).

If, in addition, there exists δ̃ = δ̃ (t
0

)> 0 (δ̃ ≤ δ ) suh that for eah solution x(t)

with an initial point (t
0

,x
0

) satisfying the ondition ‖x
0

‖< δ̃ the requirement

lim
t→∞

x(t) = 0 is ful�lled, then x∗(t)≡ 0 is alled asymptotially Lyapunov stable,

or simply asymptotially stable.

If in the previous de�nition the number δ is independent of t

0

, then the solution

is alled uniformly Lyapunov stable or uniformly stable (on [t+,∞)).
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An equilibrium position x∗(t)≡ 0 of the DAE (1) (f(t,0) ≡ 0) is alled

Lyapunov unstable, or simply unstable, if for some ε > 0 (ε < R), t

0

∈ [t+,∞)
and any δ > 0 there exist a solution xδ (t) of the IVP (1), (3) and a time moment

t

1

> t

0

suh that ‖x
0

‖< δ and ‖xδ (t1)‖ ≥ ε.

Let f(t,0) ≡ 0 and f : [t+,∞)×Rn → Rn

.

If the equilibrium position x∗(t)≡ 0 of the DAE (1) (f(t,0) ≡ 0) is asymptotially

stable and, moreover, for eah point (t
0

,x
0

) ∈ L
t+ there exists a global solution

x(t) of the IVP (1), (3) and lim
t→∞

x(t) = 0, then x∗(t)≡ 0 is alled asymptotially

stable in the large, and the DAE is alled ompletely stable or asymptotially

stable.

Remark. Sine the Lagrange instability of a solution implies its Lyapunov

instability, the theorems on the Lagrange instability of DAEs an also be treated

as Lyapunov instability theorems.

Asymptoti stability in the large for expliit ODEs was onsidered in

[Krasovsky N.N. Some problems of the theory of stability of motion, 1959℄.
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B

r

1

(0) = {z ∈ R
n | ‖z‖ ≤ r

1

},

B

x

p

1

,x
p

2

r

1

,r
2

(0) = {x ∈ R
n | ‖x

p

i

(t)‖ ≤ r

i

,x
p

i

(t) = P

i

(t)x, i = 1,2}.
(18)

Theorem 6 (Lyapunov stability and asymptoti stability of equilibrium position

of the DAE). Let f ∈C([t+,∞)×U

x

R

(0),Rn), f(t,0)≡ 0,

∂ f/∂x ∈ C([t+,∞)×U

x

R

(0),L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)), and the penil

λA(t)+B(t) satisfy (11), where C

2

∈C1([t+,∞),(0,∞)). Assume that for eah

t∗ ∈ [t+,∞) and x∗
p

1

(t∗) = 0, x

∗
p

2

(t∗) = 0 the operator

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible. Then the following statements are true:

1. Let there exist numbers r

1

,r
2

> 0, r

1

+ r

2

< R, and a positive de�nite

funtion V ∈C1([t+,∞)×B

r

1

(0),R) suh that for all t ∈ [t+,∞), x ∈ B
x

p

1

,x
p

2

r

1

,r
2

(0)

the following inequality holds:

V

′
(15)

(t,x
p

1

(t)) ≤ 0. (19)

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is Lyapunov stable.
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2. Let there exist numbers r

1

,r
2

> 0, r

1

+ r

2

<R, and positive de�nite funtions

V ∈ C

1([t+,∞)×B

r

1

(0),R), W ∈ C(B
r

1

(0),R), and U ∈C(B
r

1

(0),R) suh that

V(t,z)≤W(z) for all t ∈ [t+,∞), z ∈ B
r

1

(0), and

V

′
(15)

(t,x
p

1

(t))≤−U
(
x

p

1

(t)
)

(20)

for all t ∈ [t+,∞), x ∈ B

x

p

1

,x
p

2

r

1

,r
2

(0), x
p

1

(t) 6= 0;

also, let

G

−1(t)Q
2

(t)[f(t,P
1

(t)x+P

2

(t)x)−A

′(t)P
1

(t)x]→ 0

as x→ 0 uniformly in t on [T,∞) for some T> t+. (21)

Then the equilibrium position x∗(t)≡0 of the DAE (1) is asymptotially

Lyapunov stable.
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Theorem 7 (Lyapunov instability of equilibrium position of the DAE).

Let f ∈C([t+,∞)×U

x

R

(0),Rn), f(t,0)≡ 0, ∂ f/∂x ∈ C([t+,∞)×U

x

R

(0),L(Rn)),

A,B ∈C1([t+,∞),L(Rn)), and the penil λA(t)+B(t) satisfy (11), where

C

2

∈C1([t+,∞),(0,∞)). Assume that for eah t∗ ∈ [t+,∞) and x∗
p

1

(t∗) = 0,

x

∗
p

2

(t∗) = 0 the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible. Let there exist numbers T≥ t+ and r

1

,r
2

> 0, r

1

+ r

2

< R, and a

funtion V ∈C1([T,∞)×B

r

1

(0),R) suh that

1. V(t,z)→ 0 uniformly in t on [T,∞) as ‖z‖→ 0;

2. there exists a positive funtion U ∈ C(B
r

1

(0),[0,∞)) suh that

V

′
(15)

(t,x
p

1

(t))≥U

(
x

p

1

(t)
)
> 0 or V

′
(15)

(t,x
p

1

(t))≤−U
(
x

p

1

(t)
)
< 0 (22)

for all t ∈ [T,∞), x ∈ B
x

p

1

,x
p

2

r

1

,r
2

(0), x
p

1

(t) 6= 0;

3. for eah ∆
1

> 0 and eah ∆
2

> 0, ∆
i

≤ r

i

, there exist x

p

1

(T) 6= 0 and x

p

2

(T)

suh that ‖x
p

i

(T)‖ < ∆
i

, i= 1,2, and V(T,x
p

1

(T))V′
(15)

(T,x
p

1

(T))> 0

(i.e., the sign of the funtion V oinides with the sign of the derivative V

′
(15)

at

(T,x
p

1

(T))).

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is Lyapunov

unstable.
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Theorem 8 (asymptoti stability in the large or omplete stability of the DAE).

Let f ∈C([t+,∞)×Rn,Rn), f(t,0) ≡ 0, ∂ f/∂x ∈ C([t+,∞)×Rn,L(Rn)),

A,B ∈C1([t+,∞),L(Rn)), the penil λA(t)+B(t) satisfy (11), where

C

2

∈C1([t+,∞),(0,∞)). Let the onditions 1), 2) of Theorem 1 or 1), 2) of

Theorem 2 (on the global solvability), as well as ondition (21), be satis�ed.

Assume that there exist positive de�nite funtions V ∈ C

1([t+,∞)×Rn,R),

W ∈ C(Rn,R) and U ∈ C(Rn,R) suh that

1. V(t,z) ≤W(z) for all t ∈ [t+,∞), z ∈ Rn

;

2. V(t,z)→ ∞ uniformly in t on [t+,∞) as ‖z‖→ ∞;

3. for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , xp
1

(t) 6= 0 (x

p

i

(t) = P

i

(t)x, i= 1,2), the

inequality (20) holds.

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is asymptotially

stable in the large (the DAE (1) is ompletely stable).
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The onditions 1), 2) of Theorem 1 (on the global solvability):

1) for eah t ∈ [t+,∞) and eah x

p

1

(t) ∈X
1

(t) there exists a unique

x

p

2

(t) ∈ X

2

(t) suh that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for eah t∗ ∈ [t+,∞), x∗
p

i

(t∗) ∈ X

i

(t∗), i= 1,2, suh that

(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗)) ∈ L

t+ the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible;

The onditions 1), 2) of Theorem 2 (on the global solvability):

1) for eah t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) there exists x

p

2

(t) ∈ X

2

(t) suh that

(t,x
p

1

(t)+x

p

2

(t)) ∈ L
t+ ;

2) for eah t∗ ∈ [t+,∞), x∗
p

1

(t∗) ∈ X

1

(t∗), x
i

p

2

(t∗) ∈X2

(t∗) suh that

(t∗,x
∗
p

1

(t∗)+x

i

p

2

(t∗)) ∈ L

t+ , i= 1,2, the operator funtion Φ
t∗,x∗

p

1

(t∗)(xp2(t∗))

de�ned by Φ
t∗,x∗

p

1

(t∗) : X
2

(t∗)→ L(X
2

(t∗),Y2

(t∗)),Φ
t∗,x∗

p

1

(t∗)(xp2(t∗)) =[
∂

∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is basis invertible on

[x1
p

2

(t∗),x
2

p

2

(t∗)].
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Outlooks

1

It is planned to extend the obtained results to the ase when X,Y are Banah

spaes, f : [t+,∞)×X→Y and A(t),B(t) : X→Y (t ∈ [t+,∞)) are losed

linear operators with the domains D

A(t), DB(t), D=D

A(t)∩DB(t) 6= {0}.

In this ase we will require that A(t), B(t) be strongly ontinuously

di�erentiable on [t+,∞) (i.e., for eah d ∈D the funtions A(t)d, B(t)d be

ontinuously di�erentiable on [t+,∞)).

2

It is planned to onsider semilinear time-varying DAEs of index higher than 1.

A regular penil λA(t)+B(t) is a regular penil of index ν (ν ∈N) if there

exist funtions C

1

,C
2

: [t+,∞)→ (0,∞) suh that for every t ∈ [t+,∞)

‖R(λ ,t)‖ ≤ C

1

(t)|λ |ν−1, |λ | ≥ C

2

(t). (23)

[Rutkas A.G., Vlasenko L.A. Existene of solutions of degenerate nonlinear

di�erential operator equations, Nonlinear Osillations, 2001℄

Then for eah t ∈ [t+,∞) there exist the two pairs of mutually omplementary

projetors P

j

(t), Q
j

(t), j= 1,2, (14) whih generate the diret

deompositions of D and Y (12) suh that the operators A(t), B(t) have the

blok representations (13), where A

−1
1

(t) and B−1
2

(t) exist.

In general, the order of pole of the resolvent (A(t)+ µB(t))−1 at the point

µ = 0 is alled the index of the regular penil λA(t)+B(t).
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