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Difference delay systems

▶ We consider difference delay systems of the form:

x(t) =
N∑
j=1

Ajx(t − Λj) + Bu(t), x ∈ Rd , u ∈ Rm, t ≥ 0. (1)

▶ d ,m,N are positive integers, Aj ∈ Rd×d for 1 ≤ j ≤ N,
B ∈ Rd×m, 0 < Λ1 < · · · < ΛN .

Interest =⇒ Lq controllability criteria in the frequency domain,
q ∈ [1,+∞).
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1-D hyperbolic PDE of conservation laws

{
∂tR(t, x) + Λ∂xR(t, x) = 0, (t, x) ∈ Ωhyp,

R(t, 0) = KR(t, 1) + Bu(t), t ≥ 0,

with

▶ Diagonal matrix Λ:

Λ = diag{λ1, · · · , λd}, λi > 0 for all i = 1, . . . , d . (2)

▶ Domain :

Ωhyp = {(t, x) ∈ R2, 0 < x < 1 and 0 < t < +∞}; (3)

Characteristic method implies:y1(t)
...

yn(t)

 = K

y1(t − Λ1)
...

yn(t − Λn)

+ Bu(t), for t ≥ 0, Λi = 1/λi . (4)
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Hautus criteria for ODE
Consider the ordinary differential equation in Rd , d ∈ N:

d

dt
x(t) = Ax(t) + Bu(t), x(0) ∈ Rd , B ∈ Rd×m. (5)

Definition
The ODE is controllable if for all T > 0 and x(0), xf ∈ Rd , there
exists a function u defined on [0,T ] such that x(T ) = xf .

Theorem (Kalman)

The ODE system is controllable if and only if

Rank [B, AB, . . . , Ad−1B] = d . (6)

Theorem (Hautus-Fattorini)

The ODE system is controllable if and only if

Rank [pId − A,B] = d , p ∈ C. (7)



5/29

Hautus Criteria for Difference delay system?

Taking the Laplace transform in the ODE leads to:

(pId − A) x̂(p) = Bû(p), p ∈ C, (8)

where x̂(p) =
∫ +∞
−∞ x(t)e−ptdt and û(p) =

∫ +∞
−∞ u(t)e−ptdt.

We now do the same in the difference delay system where we take
the Laplace transform in the system, with x(t) = u(t) = 0, t < 0:

Q̂0(p)x̂(p) = Bû(p), p ∈ C, (9)

where

Q̂0(p) := Id −
N∑
j=1

e−pΛjAj , p ∈ C.

We want Lq controllability criteria in terms of Q̂0(p) and B
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Realization theory

Input u belongs to the subspace of Lq(R,Rm) with compact
support included in R−:


x(t) =

N∑
j=1

Ajx(t − Λj) + Bu(t), for t ≥ inf supp(u),

x(t) = 0, for t < inf supp(u),

y(t) = x(t − ΛN), for t ∈ [0,+∞),

(10)

Want to write System (10) as a convolution operator with a kernel
in the space of Radon measures M(R) with support in R+, i.e. we
want to find A ∈ M+(R) such that the input-output system (10)
can be represented as

y(t) =

∫ +∞

−∞
A(t − τ)u(τ)dτ = (A ∗ u)(t), t ∈ R+, (11)

where ∗ is the convolution product.
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Realization theory

We have

y(t) = (A ∗ u)(t), t ∈ R+ and A = Q−1 ∗ P, (12)

where

Q := δ−ΛN
Id −

N∑
j=1

δ−ΛN+Λj
Aj , , P := Bδ0,

and Q−1 is invertible over the Radon measure space M(R).

Remark
We have Q̂(p) = Q̂0(p)e

pΛN .
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Realization theory

We define π : ϕ → ϕ|R+ the truncation operator on Lq(R,Rd).
We can rewrite the system as:

y = π(A ∗ u). (13)

We define the state space of System (10) in terms of the
distribution Q as

(Lq)Q :=
{
y ∈ Lq

(
R+,Rd

)
| π(Q ∗ y) = 0

}
. (14)

State space in Radon measures:

(R)Q :=
{
πϕ | ϕ ∈ (M(R+))

d and π(Q ∗ πϕ) = 0
}
. (15)

State space in distributions:

(D)Q :=
{
πϕ | ϕ ∈

(
D ′(R+)

)d
and π(Q ∗ πϕ) = 0

}
. (16)
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Definition approximate controllability

The difference delay system is said to be:

1) Lq approximately controllable (from the origin) if for every
ϕ ∈ Lq([−ΛN , 0],Rd), there exist n ∈ N, Tn > 0 and
un ∈ Lq([0,Tn],R) such that

lim
n→+∞

∥y(Tn + ·)− ϕ(·)∥Lq([−ΛN ,0],Rd ) = 0;

2) R(adon) approximately controllable (from the origin) if for
every ϕ ∈ M([−ΛN , 0],Rd), there exist n ∈ N, Tn > 0 and
un ∈ M([0,Tn],R) such that

y(Tn + ·)− ϕ(·) −→
n→+∞

0, in distributional sense.

3) D(istributional) approximately controllable (from the origin) if
for every ϕ ∈ D′([−ΛN , 0],Rd), there exist n ∈ N, Tn > 0 and
un ∈ D′([0,Tn],R) such that

y(Tn + ·)− ϕ(·) −→
n→+∞

0, in distributional sense.
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Definition exact controllability

The difference delay system is said to be:

1) Lq exactly controllable (from the origin) if for every
ϕ ∈ Lq([−ΛN , 0],Rd), there exist T > 0 and u ∈ Lq([0,T ],R)
such that

y(T + θ) = ϕ(θ), θ ∈ [−ΛN , 0];

2) R(adon) exactly controllable (from the origin) if for every
ϕ ∈ M([−ΛN , 0],Rd), there exist T > 0 and u ∈ M([0,T ],R)
such that

y(T + θ) = ϕ(θ) for θ ∈ [−ΛN , 0] in distributional sense.

3) D(istributional) exactly controllable (from the origin) if for
every ϕ ∈ D′([−ΛN , 0],Rd), there exist T > 0 and
u ∈ D′([0,T ],R) such that

y(T + θ) = ϕ(θ) for θ ∈ [−ΛN , 0] in distributional sense.
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Controllability in terms of realization theory

X ∈ {Lq,R,D}
▶ System (1) is

1) X approximately controllable if and only if for every πϕ ∈ (X )Q

there exists a sequence of inputs (un)n∈N (in “X”) such that:

π(A ∗ un) −→
n→+∞

πϕ in X
(
R+,Rd

)
;

2) X exactly controllable if and only if for every πϕ ∈ (X )Q there
exists u (in “X”) such that its associated output through
System (10) satisfies

π(A ∗ u) = πϕ.
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Approximate controllability

Theorem (Yamamoto 88,89)

We have the following equivalences:

a) Lq approximate controllability

b) Radon approximate controllability

c) Distributional approximate controllability

d) ∃ two sequences of distribution (Sn)n∈N and (Rn)n∈N
compactly supported in R− s.t.:

Q ∗ Rn + P ∗ Sn −→
n→+∞

δ0Id , in distributional sense. (17)

e) (Hautus-Yamamoto criteria) The two conditions hold true:

1) rank
[
Q̂(p),B

]
= d for every p ∈ C,

2) rank [AN ,B] = d.

Fundamental ingredient: Approximate Bézout identity.
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Sketch of Proof

Equivalence between a), b), c) follow from standard density
arguments.
Equivalence of them with d) is essentially explained next slide for
exact controllability.
d) implies e): Condition 1) follows as for the exact case explained
later and Condition 2) follows from Paley-Wiener.
e) implies a): Harder.

▶ Consider the semigroup of right translation on (Lq)Q . It has a
generator A;

▶ The spectrum of A is composed of eigenvalues and they are
the zero of det Q̂(.);

▶ Condition rank
[
Q̂(p),B

]
= d for every p ∈ C translate the

exact controllability on each eigenspace;

▶ Condition rank [AN ,B] = d express that the closure of the
span of all the eigenspaces is (Lq)Q .
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Exact controllability

Theorem (Yamamoto 2009)

The distributional exact controllability holds if and only if we have
the existence of two distributions S and R compactly supported in
R− such that:

Q ∗ R + P ∗ S = δ0Id . (18)

Theorem (Yamamoto 2008)

Let d = 1 and Z := {λ ∈ C| Q̂(λ) = 0}. We have the equivalence:

1. The distributional exact controllability holds.

2. Suppose that the algebraic multiplicity of each zero λ ∈ C is
uniformly bounded. There exist k ≥ 0 and c > 0 such that
|λk P̂(λ)| ≥ c for all λ ∈ Z.
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Why the Bézout arises in the controllability?

▶ Assume system distributional exactly controllable. We have
πQ−1 ∈ (D)Q so that there exists S a distribution such that
π(Q−1 ∗ P ∗ S) = πQ−1. Let the distribution
R = Q−1 ∗ P ∗ S − Q−1. Then its support is bounded on the
left and πR = 0 then R is a compactly supported distribution
in R−. Hence Bézout identity (after multiplying by Q on the
left).

▶ Assume the Bézout identity holds true. Takes any πϕ in (D)Q .
▶ Multiply Bézout on the left by Q−1 and on the right by Q ∗ ϕ:

ϕ = Q−1 ∗ (δ0Id) ∗ Q ∗ ϕ = Q−1 ∗ (P ∗ S + Q ∗ R) ∗ Q ∗ ϕ
= Q−1 ∗ P ∗ S ∗ Q ∗ ϕ+ R ∗ Q ∗ ϕ.

▶ Since (!!) π(R ∗ Q ∗ ϕ) = π(R ∗ π(Q ∗ (πϕ))) = 0, we get:

πϕ = π
(
Q−1 ∗ P ∗ S ∗ Q ∗ ϕ

)
= π

(
Q−1 ∗ P ∗ ω

)
.

▶ Thus ω = S ∗ Q ∗ ϕ is a control leading to the target πϕ.
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Bézout implies Hautus-Yamamoto for exact
controllability

Proposition

If the Bézout holds true then we have:

1) rank
[
Q̂(p),B

]
= d for every p ∈ C,

2) rank [AN ,B] = d.

▶ Let us prove that Condition 1) is necessary. Let gT ∈ Cd a
nonzero line vector such that gT Q̂(p) = 0. From the Bézout
identity, one obtains:

gTBŜ(p) = gT (19)

so that gTB ̸= 0.

▶ Conditions 2) is necessary for the approximate distributionnal
controllability so it is a necessary condition for the exact
distributionnal controllability.
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??Hautus-Yamamoto implies Bézout??
A Corona problem

▶ Assume that the hautus-Yamamoto criteria holds since it is
necessary for the exact distributional controllability.

▶ Laplace transform in the Bézout identity:

Q̂(p)R̂(p) + BŜ(p) = Id , p ∈ C. (20)

▶ (assume here m = 1) For p ∈ C zero of det Q̂(.), let
gT Q̂(p) = 0 with ∥gT∥ = 1. Then we must have
Ŝ(p) = gT/(gTB) is imposed.

▶ Interpolation problem: interpolation of Ŝ(.) on the zero of
det Q̂(p).

▶ It is a Corona problem for some class of holomorphic map.

▶ It is a complicated problem solved by Carleson in the case of
bounded holomorphic on the unit disk in 1962. But in our
case, Q̂(p) is not bounded.
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Questions

1. Controllability from the origin
▶ Controllability in finite time? Bound on this finite time?

Minimal time of controllability?

2. For Lq or Radon exact controllability, tremendous work to do.
▶ Characterization in terms of a Bézout?
▶ Hautus-type criteria for the Lq controllability?
▶ Conjecture: Lq exact controllability holds true IFF the

following two properties hold true:

1) rank
[
Q̃,B

]
= d for every Q̃ ∈ Q̂(C),

2) rank [AN ,B] = d .

3. Hautus-type criteria for stabilization of such systems? (for
ẋ = Ax + Bu, NSC = Rank [pId − A,B] = d for Re(p) ≥ 0.)

4. Very Curious!!! Equivalence with controllability to constants
(i.e., constant functions)
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Exact controllability result for one delay or in
small dimension

cf. Chitour et al [2020].

1. Case one delay: All controllability concepts are equivalent to a
Kalman condition.
Rationally dependent delays: reduce to the case of one delay.

2. Case N = d = 2 and m = 1. Let the geometric set :

S :=

{
β + |α|

(
1− Λ2

Λ1

)
e
iθ+2kπ)

(
1−λ2

Λ1

)∣∣∣∣k ∈ R
}

(21)

Kalman criteria:
▶ L2 approximate controllability iff 0 /∈ S.
▶ L2 exact controllability iff 0 /∈ S.

3. Approximate controllability to constants equivalent to L2

Approximate controllability in all dimension. Same for exact,
also true only for N = d = 2 and m = 1.
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Exact controllability result for one delay or in
small dimension

The result obtained for N = d = 2, m = 1, by Chitour et al are
based on two things:

▶ A representation formula of the following type:

xt = Υ2(t)x0 + E2(t)u. (22)

▶ Computations via some subtle transforms can be performed
for the dual operator of E2(t) so that E2(t)

∗ is bounded below
implying the L2 exact controllability.

Such arguments have no chance to work in greater dimensions
=⇒ Yamamoto’s work is interesting
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Some partial answers

It is the object of the talk and it is an outgoing work.

1. In fact, we can prove that the Lq exact controllability from
the origin is in equivalent to the Lq controllability in finite
time T for all T ≥ dΛN .

2. We have that the L1 controllability is equivalent to the
solvability of a Bézout over a Radon measure algebra.

3. At the moment, we are trying to solve the Bézout identity.
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Representation formula

Definition
The family of matrices Ξn ∈ Md ,d(R), n ∈ ZN , is defined

Ξn =


0 if n ∈ ZN\NN ,

Id if n = 0,∑N
k=1 AkΞn−ek if n ∈ NN and |n| > 0,

(23)

where ek denotes the k-th canonical vector of NN .
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Representation formula

For T ∈ [0,+∞), we introduce the following two operators:

1) Υq(T ) : Lq([−ΛN , 0],Rd) −→ Lq([−ΛN , 0],Rd)

(Υq(T )x0) (s) =
∑

(n,j)∈NN×J1,NK
−Λj≤T+s−Λ·n<0

Ξn−ejAjx0(T + s − Λ · n),

2) Eq(T ) : Lq([0,T ],Rm) −→ Lq([−ΛN , 0],Rd)

(Eq(T )u) (t) =
∑
n∈NN

Λ·n≤T+t

ΞnBu(T + t − Λ · n).

Theorem (Variation-of-constants formula)

For T ∈ [0,+∞), u ∈ Lq([0,T ],Rm), x0 ∈ Lq([−ΛN , 0],Rd), and
t ∈ [0,T ], we have

xt = Υq(t)x0 + Eq(t)u. (24)
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Controllability in finite time

Definition (Exact control. in finite time)

System (1) is said to be Lq exactly controllable in time T > 0 if
for every x0, ϕ ∈ Lq([−ΛN , 0],Rd), there exists u ∈ Lq([0,T ],Rm)
such that

x(T + θ) = ϕ(θ), θ ∈ [−ΛN , 0].

Proposition

1. System (1) is exactly controllable in time T > 0 if and only if
RanEq(T ) = Lq([0,T ],Rm).

2. System (1) is exactly controllable from the origin if and only if⋃
T≥0

RanEq(T ) = Lq([−ΛN , 0],Rd). (25)
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Controllability in finite time

Lemma (”Cayley-Hamilton”)

There exist real coefficients αk , for k ∈ NN with 0 < |k| ≤ d, such
that, for every n ∈ NN with |n| ≥ d,

Ξn = −
∑
k∈NN

0<|k|≤d

αkΞn−k . (26)

Theorem
For all T ∈ [dΛN ,+∞) and q ∈ [1,+∞), we have

RanEq(T ) = RanEq(dΛN). (27)

Theorem
Let q ∈ [1,+∞). System (1) is Lq exactly controllable from the
origin if and only if it is Lq exactly controllable in time T = dΛN .
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Radon Bézout’s identity characterization

Theorem
System (10) is L1 exactly controllable from the origin if and only if
there exist two matrices R and S with entries in M(R−) such that

Q ∗ R + P ∗ S = δ0Id . (28)

Sketch of proof:

=⇒ If L1 exactly controllable, ∃Sn ∈ L1(R,Rm×d) compactly
supported in [−dΛN , 0] such that

π(Q−1 ∗ P ∗ Sn) −→
n→+∞

πQ−1, in distribution sense. (29)

Open mapping theorem implies ∥Sn∥ ≤ C for C > 0 independent
of n. Weak compactness Radon measure there exists S a Radon
measure compactly supported in R− so that Sn −→

n→+∞
S .
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Radon Bézout’s identity characterization

We have
π(Q−1 ∗ P ∗ S) = πQ−1. (30)

⇐= Similar to the characterization of the exact distrib. control.

Theorem
System (10) is L1 exactly controllable in time T ≥ dΛN if and only
if there exist two matrices R and S with entries in M(R−) such
that

Q ∗ R + P ∗ S = δ0Id . (31)
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A necessary L1 exact controllability condition

L1 Bézout characterization implies the following corollary.

Corollary

L1 exact controllability implies:

1) rank
[
Q̃,B

]
= d for every Q̃ ∈ Q̂(C),

2) rank [AN ,B] = d.

To obtain a necessary and sufficient L1 exactly controllability, we
need to solve a Corona problem over M(R−).
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Thank You!


