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Origins: control and control theory | 1

To control means to act, to put things in order to guarantee that the
system behaves as desired.

In 1948, Norbert Wiener defined Cybernetics (or Control Theory) as the
science of control and communication in animals and machines.

"...In a desirable future, engines would obey and imitate human beings.."
Cybernetics by N. Wiener (1894-1964)
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Mathematical Formulation of Control Problem | 2

A(y) = F(u) y ∼ yd
yu

▶ y is the state to be controlled.
▶ u is the control. It belongs to the set of admissible controls.
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Mathematical Formulation of Control Problem | 2

A(y) = F(u) y ∼ yd
yu

▶ Modeling:
1 Model-driven: Meaningful Physical Model.
2 Data-driven: Machine Learning.
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Mathematical Formulation of Control Problem | 2

A(y) = F(u) y ∼ yd
yu

▶ Modeling
▶ Analysis: Existence and uniqueness of solution.
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Mathematical Formulation of Control Problem | 2

A(y) = F(u) y ∼ yd
yu

▶ Modeling
▶ Analysis: Existence (and uniqueness) of solution.
▶ Control Theory:

1 Feasibility −→ Controllability (To find at least one way to reach the
target, e.g y(x, T ) = yd(x), or y(Ni, t) = yd(t));

2 Optimality −→ Optimal control (To find the best way, in some sense,
to reach the target.)
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Nonlinear hyperbolic systems | 3

▶ We mainly focus on networked nonlinear hyperbolic systems in which solutions
can be tracked as propagating waves.

▶ Key issue: Developing and applying mathematical methods to model, understand
and control the dynamics of PDEs arising in real world applications.

Network of large deflection strings
(Nonlinear vibrating strings)

NASA Flexible flight device
(Geometrically exact beams)

Gas transport networks
(Isothermal Euler equation)

Open canal
(Saint-Venant system)
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1-D quasilinear hyperbolic system | 4

We consider the following first-order 1-D quasilinear hyperbolic system

∂y

∂t
+A(y)∂y

∂x
= F (y), (t, x) ∈ [0, T ] × [0, L], (1)

where
▶ y = (y1, · · · , yn)T is the unknown vector function of (t, x);

▶ A(y) is an n× n matrix with smooth entries aij(y)(i, j = 1, ..., n),
F (y) = (f1(y), · · · , fn(y))T is a given smooth vector function of y
with F (0) = 0. Thus, y = 0 is an equilibrium of (1).

▶ A(y) has n distinct non-vanishing real eigenvalues
λi(y)(i = 1, · · · , n) and a complete set of left (resp. right)
eigenvectors li(y) = (li1(y), · · · , lin(y)):

li(y)A(y) = λi(y)li(y). (2)

▶ We may equivalently rewrite system into its characteristic form

li(y)
(
∂yj

∂t
+ λi(y)∂yj

∂x

)
= li(y)fj(y) (i = 1, ..., n). (3)

Yue Wang 1D-NL-HyperSys FAU-Erlangen



1-D quasilinear hyperbolic system | 4

We consider the following first-order 1-D quasilinear hyperbolic system

∂y

∂t
+A(y)∂y

∂x
= F (y), (t, x) ∈ [0, T ] × [0, L], (1)

where
▶ y = (y1, · · · , yn)T is the unknown vector function of (t, x);
▶ A(y) is an n× n matrix with smooth entries aij(y)(i, j = 1, ..., n),
F (y) = (f1(y), · · · , fn(y))T is a given smooth vector function of y
with F (0) = 0. Thus, y = 0 is an equilibrium of (1).

▶ A(y) has n distinct non-vanishing real eigenvalues
λi(y)(i = 1, · · · , n) and a complete set of left (resp. right)
eigenvectors li(y) = (li1(y), · · · , lin(y)):

li(y)A(y) = λi(y)li(y). (2)

▶ We may equivalently rewrite system into its characteristic form

li(y)
(
∂yj

∂t
+ λi(y)∂yj

∂x

)
= li(y)fj(y) (i = 1, ..., n). (3)

Yue Wang 1D-NL-HyperSys FAU-Erlangen



1-D quasilinear hyperbolic system | 4

We consider the following first-order 1-D quasilinear hyperbolic system

∂y

∂t
+A(y)∂y

∂x
= F (y), (t, x) ∈ [0, T ] × [0, L], (1)

where
▶ y = (y1, · · · , yn)T is the unknown vector function of (t, x);
▶ A(y) is an n× n matrix with smooth entries aij(y)(i, j = 1, ..., n),
F (y) = (f1(y), · · · , fn(y))T is a given smooth vector function of y
with F (0) = 0. Thus, y = 0 is an equilibrium of (1).

▶ A(y) has n distinct non-vanishing real eigenvalues
λi(y)(i = 1, · · · , n) and a complete set of left (resp. right)
eigenvectors li(y) = (li1(y), · · · , lin(y)):

li(y)A(y) = λi(y)li(y). (2)

▶ We may equivalently rewrite system into its characteristic form

li(y)
(
∂yj

∂t
+ λi(y)∂yj

∂x

)
= li(y)fj(y) (i = 1, ..., n). (3)

Yue Wang 1D-NL-HyperSys FAU-Erlangen



1-D quasilinear hyperbolic system | 4

We consider the following first-order 1-D quasilinear hyperbolic system

∂y

∂t
+A(y)∂y

∂x
= F (y), (t, x) ∈ [0, T ] × [0, L], (1)

where
▶ y = (y1, · · · , yn)T is the unknown vector function of (t, x);
▶ A(y) is an n× n matrix with smooth entries aij(y)(i, j = 1, ..., n),
F (y) = (f1(y), · · · , fn(y))T is a given smooth vector function of y
with F (0) = 0. Thus, y = 0 is an equilibrium of (1).

▶ A(y) has n distinct non-vanishing real eigenvalues
λi(y)(i = 1, · · · , n) and a complete set of left (resp. right)
eigenvectors li(y) = (li1(y), · · · , lin(y)):

li(y)A(y) = λi(y)li(y). (2)

▶ We may equivalently rewrite system into its characteristic form

li(y)
(
∂yj

∂t
+ λi(y)∂yj

∂x

)
= li(y)fj(y) (i = 1, ..., n). (3)

Yue Wang 1D-NL-HyperSys FAU-Erlangen



Remarks

▶ For simplicity: The eigenvalues of A(0) are ordered, i.e.

λ1(0) < λ2(0) < · · · < λm(0) < 0 < λm+1(0) < · · ·λn(0), (4)

▶ In general, we call the following systems

∂y

∂t
+ ∂g(y)

∂x
= F (y) (5)

to be hyperbolic balance laws, where the flux g := (g1, ..., gn) is a
vector function of u. Obviously, system (5) can be written in the
quasilinear form as (1) with the Jacobian matrix

A(y) := D(g(y)). (6)
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Controllability of Hyperbolic Type | 6

Some Key Properties.
▶ Prescribe suitable boundary conditions for IBVP on a bounded

domain
> local & global
> internal control & boundary control

▶ Controllability time (T > 0)
> a finite speed of propagation of the hyperbolic wave

> maximum determinate domains
> T (> 0) should be chosen as small as possible (optimal controllability

time).
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Boundary Controllability. Difficulties may arise in... | 7

▶ Nonlinearity.
> Weak solutions. [of quasilinear hyperbolic systems → shock waves

→
an irreversible process → Impossible to get exact boundary
controllability for any arbitrarily given initial and final states [A.
Bressan, G. M. Coclite, ’02] → weaken the definition → case by case
(the scalar convex conservation law [F. Ancona, A. Marson ’98,’99, T.
Horsin, ’98], the p-system in isentropic gas dynamics [O. Glass, ’07]].

> Classical solution exists only locally in time (P. D. Lax, ’64; F. John,
’90; T. Li, ’94) → semi-global classical solution (T > 0 might be
suitably large) [M. Cirinà, ’70, T.Li, Y.Jin, B.Rao, ’00, ’01] → Local
exact controllability in the quasilinear case.

▶ Networked Structure.
> Coupling at the junction. Complexity and Nonlinearity in interface

conditions.
> Structure of networks G = (V, E) may change the controllability results

[Lagnese-Leugeing-Schmidt, ’94]
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Outline | 8

▶ Motivation and Introduction
▶ Networks of Nonlinear Strings Coupled by Spring and Mass

> 1d nonlinear wave equation
> Dynamical boundary conditions
> Description of coupling/interface conditions.

▶ Nonlinear Analysis & Control
> Well-posedness of IBVP
> Controllability
> Control design: explicit constructive method with modular structure

▶ Extension & Perspectives
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Networks of Nonlinear Strings Coupled by Spring and Mass | 9

N1

N2

N3

Nn

N0

i = 1

i = 2

i = 3

i = n

x = 0

x = L1

x = L2 x = Ln

x = L3

N0
1

N0
2

N0
3

N0
n
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Modeling 1/3: 1d quasilinear wave equation | 10

y = y(t, x) the transversal displacements of the string, governed by 1d
quasilinear wave equation

ytt(t, x) − (K(yx(t, x))x = 0, 0 ≤ x ≤ L, t ≥ 0

▶ e.g. K(yx) = cyx with constant c > 0.
▶ e.g. K = T (|yx|) yx

|yx| , T is the tension being a function of the
extension, following the tangential direction yx

|yx| .
▶ You can add f(y, yx, yt) at the right side.
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Modeling 2/3: boundary conditions | 10

Typical boundary conditions with control
u(t) at x = L

y = u(t) (Dirichlet type),
yx = u(t) (Neumann type),
yx + θy = u(t), (Robin type),
yx + γyt = u(t), (Dissipative type).

θ, γ > 0.
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Modeling 2/3: boundary conditions | 10

x = 0

Example (Dynamical Boundary Condition)

mytt(0, t) +K(yx(0, t))
+ g(yt(0, t)) + h(y(0, t)) = 0,

where
▶ ytt: Inertial force of the end point with

mass m,
▶ K(yx): Stress,
▶ g(yt): Speed-dependent damping,
▶ h(y): External force associated with

displacement.
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Modeling 2/3: nonlinear dynamical boundary condition | 10

x = 0

General form of nonlinear dynamical
boundary conditions:

ytt = G(t, y, yx, yt),

where G is a C1 function:
▶ contains higher order derivative ytt,
▶ follows the dynamic law of F = ma,
▶ characterizes the relationship between force

acting on the end-mass and its motion.
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Modeling 3/3: coupling/interface condition - elastic spring | 11


yi

tt −Ki(yi
x)x = 0, 0 ≤ x ≤ L, t > 0, i = 1, 2,

x = 0 :y1
tt(0, t) = K1(y1

x(0, t))−κ(y1(0, t) − y2(0, t)),
y2

tt(0, t) = K2(y2
x(0, t))+κ(y1(0, t) − y2(0, t)),

x = L :yi = ui(t), i = 1, 2.

string y1(t, x)

string y2(t, x)

springκ

x = 0 x = L

Controls

Figure: Two strings connected via masses and an elastic spring



Modeling 3/3: coupling/interface condition - elastic spring | 11
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▶ If the spring stiffness tends to infinity, formally the system tends to the classical
string-mass problem. 1

▶ For spring-mass system it is known that the mass smoothens the waves while
crossing the mass-point.2

▶ If the spring stiffness tends to zero, the strings become uncoupled.
▶ The spring coupling can be seen as a weakening of the classical transmission

conditions at a multiple joint.3
1G. Leugering, 1998; F. Almusallams, 2015; Y.Wang, T.Li, 2018
2S. Hansen, E.Zuazua 1995
3G.Leugering,S.Micu, I.Roventa, Y.Wang, 2022
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Modeling 3/3: interface condition - viscoelastic spring | 12

▶ Kelvin Model: a classical class of viscoelastic solid models.
yi

tt −Ki(yi
x)x = 0, 0 ≤ x ≤ L, t > 0, i = 1, 2,

x = 0 :y1
tt(t, 0) = K1(y1

x(t, 0)) − κ(y1(t, 0) − y2(t, 0)) + µ(y1
t (t, 0) − y2

t (t, 0)),

y2
tt(t, 0) = K2(y2

x(t, 0)) + κ(y1(t, 0) − y2(t, 0)) + µ(y1
t (t, 0) − y2

t (t, 0)),

x = L :yi = ui(t), i = 1, 2.

string y1(t, x)

string y2(t, x)

springdash-pot

µ κ

x = 0 x = L

Controls

Figure: Networked strings and a Kelvin-type spring
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Modeling 3/3: interface condition - viscoelastic spring | 13

▶ Maxwell Model: a classical class of viscoelastic fluid models.

yi
tt −Ki(yi

x)x =0, 0 ≤ x ≤ L, i = 1, 2,

x = 0 : y1
tt(0, t) =K1(y1

x(t, 0))−κ(y1(t, 0) − y2(t, 0))

+κ2

µ

∫ t

0
e

− κ
µ

(t−τ)(y1(τ, 0) − y2(τ, 0))dτ

y2
tt(0, t) = · · ·

x = L : yi = ui(t), i = 1, 2.

string y1(t, x)

string y2(t, x)

spring

dash-potµ

κ

x = 0 x = L

Controls
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Generalization | 14

Consider the following coupled system of 1-D quasilinear wave equations
(i = 1, ..., n):

(E)



yi
tt − (Ki(yi, yi

x))x = F (y,yx,yt), x ∈ [0, Li], t ∈ [0, T ]
yi

tt(t, 0) = Gi(t,y(t, 0),yx(t, 0),yt(t, 0))

+
∫ t

0
Hi(t, s,y(s, 0))ds, t ∈ [0, T ]

yi(t, Li) = ui(t), t ∈ [0, T ]
(yi, yi

t)(0, x) = (ϕi(x), ψi(x)), x ∈ [0, Li].

where
▶ y = (y1, ..., yn)T is an unknown vector function of (t, x),
▶ Ki = Ki(yi, yi

x) are given C2 functions of yi and yi
x,

▶ ∂
∂yi

x
Ki(yi, yi

x) > 0,
▶ F i, Gi, Hi are given C1 functions of their arguments and 0 value at

null state (i.e. 0 is an equiblium).
Yue Wang 1D-NL-HyperSys FAU-Erlangen



Problem Description: Exact boundary controllability | 15

Exact Boundary controllability (EBC)
problem
Let T > 0. For any given (ϕi, ψi)(x)
and final state (Φi,Ψi)(x) in
C2([0, Li];R) × C1([0, Li;R])(i =
1, ..., n), do there exist n boundary
controls {ui(t)}n

i=1(0 ≤ t ≤ T ) such
that the solution of system (E)
satisfies

(yi, yi
t)(T, x) = (Φi(x),Ψi(x))?

t

t = T

control

(ϕi(x), ψi(x))

(Φi(x),Ψi(x))

x = LiL1 x = 0

▶ The wellpoesedness of IBVP: the existence and uniqueness of semi-global classical
solution yi ∈ C2([0, T ] × [0, Li];R)3 with small norm (Y.Wang, 2017).

▶ HUM method (J.Lions, 1980s) and duality method (E.Zuazua, 1990s) can not be
applied on this case.

▶ Local controllability: (ϕ, ψ) and (Φ,Ψ) are close to the equilibrium point
(Y.Wang, Li, Leugering, 2019).



Wellposedness | 16

We introduce wi = (wi
1, w

i
2, w

i
3)T := (yi, yi

x, y
i
t)T . Then we get

∂

∂t

wi
1

wi
2

wi
3

 +

0 0 0
0 0 −1
0 −Ki

wi
2

0

 ∂

∂x

wi
1

wi
2

wi
3

 =

 wi
2

0
F i(wi) +Ki

wi
1
wi

2



with (t, x) ∈ [0, T ] × [0, Li]. This, in turn, can be rewritten in the form of
a quasilinear hyperbolic system

wi
t +Ai(x,wi)wi

x = F̃ (wi),

where Ai has 3 distinct real eigenvalues:

λ−
i = −

√
Ki

wi
2
(wi

1, w
i
2), λ0

i = 0, λ+
i =

√
Ki

wi
2
(wi

1, w
i
2).
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Wellposedness ctd. | 17

We may integrate the boundary conditions w.r.t. time and obtain a kind of
non-local (of time) boundary condition in the first order system (FOS):

(FOS)



wi
t +Ai(x,wi)wi

x = F̃ (wi), x ∈ [0, Li], t ∈ [0, T ]

wi
2(t, 0) = ψi(0) +

∫ t

0
Gi(τ,wi(τ, 0)) dτ

+
∫ t

0

∫ τ

0
Hi(τ, s, wi

1(s, 0)) dsdτ, t ∈ [0, T ]

wi
1(t, Li) = ui(t), t ∈ [0, T ]

wi(0, x) = w0,i(x) = (ϕi(x), ψi(x), ϕi′(x)), x ∈ [0, Li].

▶ Local existence of C1 solution to (FOS) (T.Li, ’85): ∃! C1 solution on
R(δ) = {(t, x)|0 ≤ t ≤ δ, 0 ≤ x ≤ L}, where δ depends on the initial and
boundary data.

▶ For given T > 0, NO results on existence of semi-global classical solutions before.

Yue Wang 1D-NL-HyperSys FAU-Erlangen



Lemma: A uniform priori estimate of solution to (FOS) [Y.W.’19]

∥w(t, ·)∥1 ≜ ∥w(t, ·)∥ +
∥∥∥∂w
∂x

(t, ·)
∥∥∥ ≤ C(T ), 0 ≤ t ≤ T, (7)

where ∥ · ∥ denotes C0-norm.
Main Idea in the Proof: We apply

l−
i = (0,

√
Ki

wi
2
, 1), l0

i = (1,0,0), l+
i = (0,−

√
Ki

wi
2
, 1)

to (FOS) and define Riemann variables as

vi = li(w)w, v̄i = li(w)wx.

They follow

Dvi

Dit
=

n∑
j,k=1

βijk(w)v̄j v̄k +
n∑

j=1

β̃ij(w)F̃j(w) (i = 1, ..., n),

Dv̄i

Dit
=

n∑
j,k=1

γijk(w)v̄j v̄k +
n∑

j=1

γ̃ij(w)v̄j (i = 1, ..., n),

along the characteristic curves, where

D

Dit
=

∂

∂t
+ λi(u)

∂

∂x
.
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Uniform Priori Estimate (ctd.) | 19

Let
T1 = min

i=1,...,n;
∥w∥≤η0

L

|λi(w)|
> 0.

For (t, x) ∈ R(T1), we estimate |vi(t, x)| by integrating (backward) along the
characteristic curve (three cases, λi <,=, > 0). It will arrive at (0, α), or (t∗, L), or
(t∗, 0). In different cases, we could obtain

|vi(t, x)| ≤ ∥v(0, ·)∥ + C1

∫ t

0
vi(τ) dτ,

or

|vi(t, x)| ≤ A∥vi(0, ·)∥ + ∥u′∥ + C2

∫ t

0
vi(τ) dτ, ∀t ∈ [0, T1],

where v(τ) = sup0≤t≤τ ∥v(t, ·)∥.
Using Gronwall inequality it follows that

|v(t, x)| ≤ C max{∥u′∥, ∥v(0, ·)∥} ≜ Cα0, ∀t ∈ [0, T1],

with C > 1.
Then repeating N =

[
T
T1

]
+ 1 times, we have

|v(t)| ≤ CNα0, ∀t ∈ [(N − 1)T1, T ].
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Back to the boundary control problem | 20

(E)



yi
tt − (Ki(yi, yi

x))x = F (y,yx,yt), x ∈ [0, Li], t ∈ [0, T ]
yi

tt(t, 0) = Gi(t,y(t, 0),yx(t, 0),yt(t, 0))

+
∫ t

0
Hi(t, s,y(s, 0))ds, t ∈ [0, T ]

yi(t, Li) = ui(t), t ∈ [0, T ]
(yi, yi

t)(0, x) = (ϕi(x), ψi(x)), x ∈ [0, Li].

The system (E) is locally exact controllable
▶ with n controls [G.Leugering, T.Li, Y.Wang, ’18,’19].
▶ This result can be improved by reducing the number of controls to
n− 1, but the space of controlled initial data is asymmetric
[G.Leugering, S.Micu, I.Robenta, Y.Wang, ’22] [G.Leugering, C.Rodriguez,
Y.Wang, ’22].
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Exact boundary Controllability | 21

Theorem (Full Control)
In a neighbourhood of an equilibrium (around 0), the system (E) is locally
exact boundary controllable when

▶ (Controllability time, sharp)

T > 2T̄ ,

where we define the maximal travelling time for the strings:

T̄ = max
i=1,...n

Li√
Ki

yx
(0, 0)

.

▶

det

(
∂Gi(t, 0, 0, 0)

∂yj
x

)
n×n

̸= 0, ∀t ∈ [0, T ].
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Proof of Theorem | 22

x

t

x

t

x

t

R1
I

R1
II

R2
I

R2
II

R
3
I

R
3
II

φ1, ψ1

Φ1,Ψ1

φ2, ψ2

Φ2,Ψ2

φ3, ψ3

Φ3,Ψ3

Dirichlet B.C.

f2

f3

T

T − T

T

x

t

x

t

x

t

φ1

Φ1

φ2

Φ2

φ3

Φ3

T
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Proof. A constructive method with modular structure | 23

Step 1: Solving the forward mixed initial-boundary value problem on domain
Rf := [0, T̄ ] × Ω̄, where Ω̄ := Πi=1,...,n[0, Li].



yi
tt − (Ki(yi, yi

x))x = F i(y,yx,yt),

yi
tt(t, 0) = Gi(t,y,yt,yx) +

∫ t

0
Hi(t, s,y)ds,

yi(t, Li) = qi(t),

(yi, yi
t)(0, x) = (ϕi(x), ψi(x)).

where qi(t)(i = 1, ..., n) are any given
C2 functions of t.

t

x = LiL1 x = 0
(ϕ(x), ψ(x))

T
yf
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Proof. A constructive method with modular structure | 23

Step 2: Solving the backward mixed initial-boundary value problem on domain
Rb := [T − T̄ , T ] × Ω̄.



yi
tt − (Ki(yi, yi

x))x = F i(y,yx,yt),

yi
tt(t, 0) = Gi(t,y,yt,yx) +

∫ t

0
Hi(t, s,y)ds,

yi(t, Li) = q̄i(t),

(yi, yi
t)(T , x) = (Φi(x),Ψi(x)).

where q̄i(t)(i = 1, ..., n) are any given
C2 functions of t.

t

x = LiL1 x = 0

yf

(Φ(x),Ψ(x))

t = T

T − T̄

yb
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Proof. A constructive method with modular structure | 23

Step 3 (Key): Observe and connect the trace (not unique).

(ci(t), c̄i(t)) =

{
(yi

f (t, 0), yi
fx(t, 0)), 0 ≤ t ≤ T1,

(yi
b(t, 0), yi

bx(t, 0)), T − T1 ≤ t ≤ T,

1 Since Rf and Rb do not overlap,
we first construct ci(t) ∈ C3[0, T ].

2 Because all (ci, c̄i) should satisfy n
interface conditions

yi
tt(t, 0) = Gi(t,y,yt,yx) +

∫ t

0
Hi(t, s,y)ds,

we can solve (c̄1, ..., c̄2)(t) when

det

(
∂Gi(t, 0, 0, 0)

∂yj
x

)
n×n

̸= 0,∀t ∈ [0, T ].

t

x = LiL1 x = 0

yf

yb
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Proof. A constructive method with modular structure | 23

Step 4: Change the role of t and x. We solve the side-wise problem on each
string (here we omit index i in the systems).

yxx −K−1
yx

(y, yx)ytt = −K−1
yx

(y, yx)
(
Ky(y, yx)yx + F (·)

)
,

(y, yx)(t, 0) = (c(t), c̄(t)), (new I.C.),
y(0, x) = ϕ(x), y(T, x) = Φ(x), (new B.C.).

We get the solution y = (y1, ..yn) on
the domain R = [0, T ] × Ω̄.

x = LiL1 x = 0
x

t = T

yiy1

ϕ(x)

Φ(x)
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Proof. A constructive method with modular structure | 23

Step 5: Compute the controls by the trace!

ui(t) := yi(t, Li), t ∈ [0, T ].

x = LiL1 x = 0
x

t = T

yiy1

ϕ(x)

Φ(x)
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Proof. A constructive method with modular structure | 23

Step 6: Verify that y = y(t, x) satisfies all data.

yi(t, x) ≡ yi
f (t, x)

on the domain
{

(t, x)| 0 ≤ t ≤ T1
L1

(L− x), 0 ≤ x ≤ L1
}

(Uniqueness of C2

solution on the one-sided mixed initial boundary value problem, T.Li 2010).

▶ Note that

T1 = sup
|wi

1|+|wi
2|≤ε

 L1√
Ki

wi
2
(wi

1, w
i
2)

 .

▶ y1
t (0, x) = ψ1(x)(0 ≤ x ≤ L1).

▶ y1
t (T, x) = Ψ1(x)(0 ≤ x ≤ L1).

x = LiL1 x = 0
x

t = T
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Outline | 24

▶ Motivation
▶ Modeling

> 1d nonlinear wave equation
> Dynamical boundary conditions
> Coupling/interface conditions.

▶ Analysis & Control
> Well-posedness of IBVP
> Controllability
> Control design: explicit constructive method with modular structure

▶ Extension & Perspectives

Yue Wang 1D-NL-HyperSys FAU-Erlangen



Extension | 25

From the modeling perspective, one can consider..
▶ Extension to nonlinear mechanical systems: elastic multi-body

structures, flexible structures, robotic systems.
▶ Extension to pipe-flow: gas network, water networks, flow-structure

interaction.
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Extension 1/4: spatial vibration of strings | 26

▶ The result can be extended to spatial vibration of strings (Joint work with G.
Leugering, C. Rodriguez, to appear)

N1

N2

N3

N4

N5

N5
1

N5
2

N5
3

N5
4

1

2

3

4

ρiRi
tt(x, t) = [Gi(Ri

x(x, t))]x − ρige, in (0, Li) × (0, T ), i ∈ I
The multiple node condition:

ϵijGi(Ri
x(xij , t)) + m

j
i Ri

tt(xij , t)

+ κj

[( ∑
k∈Ij

a
j
ik

)
Ri(xij , t) −

∑
k∈Ij

a
j
ik

Rk(xkj , t)
]

= 0, t ∈ (0, T ), j ∈ J M
, i ∈ Ij
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Extension 2/4: geometrically exact beams | 27

▶ Project Conflex. Control of flexible structures and fluid-structure interactions
(Funding: Marie Sklodowska-Curie grant No.765579).

▶ GEB: any magnitude of displacement and rotation. [G. Leugering, C. Rodriguez,
Y.Wang, JMPA, ’21]
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Extension 3/4: shallow water systems with a partially immersed
obstacle | 28

▶ Project Conflex. [G.Vergara-Hermosilla, G.Leugering, Y.Wang, COCV ’21].
▶ One dimensional nonlinear shallow water system, describing the free surface flow of

water as well as the flow under a fixed gate structure.

{
∂tζ + ∂xq = 0,

∂tq + ∂x

(
q

2
/h

)
+ gh∂xζ = 0,

where ζ(t, x) is the free surface
elevation, h(t, x) is the fluid height,
q(t, x) is the horizontal discharge.

ζ0(t, 0) = ζ1(t, 0), q0(t, 0) = q1(t, 0),{
q2(t, l0 + r) = q1(t, l0 − r) = qw(t),[ q2

i

2h2
i

+ gζi

]i=2,x=l0+r

i=1,x=l0−r
= −α

d
dt

qw(t),

where α = 2r/hw .
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Extension 4/4: tree- or A-shaped network | 29

1

2

4

3

5

1 2

3

4
5

For trees with one clamped node (simple node E), the sharp estimate of
the contollability time is determined the "longest" chain-like subnetwork.

Ti0j0 = max
i,j∈S̃,i ̸=j

∑
k∈Dij

Lk√
Kk

vk
(0, 0)

.
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Extension 4/4: tree- or A-shaped network | 29

1

2

4

3

5

1 2

3

4
5

For A-shaped network:
▶ No exact boundary controllability on a network with loops in general.

[J.E. Lagnese, G. Leugering, E.J.P.G. Schmidt, ’94].
▶ BUT it is possible to get the exact boundary controllability of nodal

profile. See [K.Zhuang, G.Leugering, T.Li ’19] [M.Guget etc. ’11]
[T.Li, Y.Wang ’21] [C.Rodriguez, G.Leugering, Y. ’21] for different
nonlinear systems.
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Perspectives 1/3 | 30

▶ If masses are present, at multiple nodes a complex smoothing pattern
appears leading to asymmetric control spaces [Hansen and Zuazua
SICON 1996], [Leugering, Micu, Roventa, Wang JEE 2022] [observability property
on transport equation with interior mass, in discussion with E. Zuazua].

▶ Controllability properties: nodal profile control (especially on networks
with cycles), observability, sychronization, optimal control, turnpike,
feedback control and stabilization, constrained controllability [of gas
flow, in discussion with M. Gugat].
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Perspective 2/3 | 31

▶ Realization and Numerics:
1 Random batch method for hyperbolic system via the characteristic

method [in discussion with D.Veldman, Benasque 2022].
2 Non-overlapping domain decomposition on complex spatial structures

[in discussion with G.Leugering, Benasque 2022].
3 Numerical approximation of constructive method [M. Gugat, J.

Habermann, M. Hintermüller, O. Huber, 2021].
4 Physics-Informed-NN for approximating hyperbolic system [in

discussion with G.Leugering, P.Brendel, Benasque 2022].

▶ Large scale network, hybrid systems: A combined model and data
based approach [Funded by ETI].
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Perspective 3/3 | 32

▶ Interplay between degeneration and control. [Funded by DFG]
1 Lack of one-sided exact controllability in ytt − (xαyx)x = 0 when

α ≥ 2.[ F. Alabau-Boussouira, P. Cannarsa and G. Leugering, ’17]
2 Moving controllability? ytt − yxx = f(t)δγ(t)(x) [C. Castro ’19].
3 Some relaxed version of the damage problem?

⋄ Damped wave equation, ytt − yxx + u(x)yt = 0 [in discussion with
J. Yong, D. Veldman, E. Zuazua];
⋄ Missing springs in the coupling [in discussion with G. Leugering, C.
Rodriguez].
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