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The controllability problem.

Statement of the controllability problem

We study the following Stefan problem:

ut − uxx = 0 in Q`,

u(0, t) = v(t) in (0,T ),

u(`(t), t) = 0 in (0,T ),

β`t(t) = −ux(`(t), t) in (0,T ),

`(0) = `0,

u(· , 0) = u0 in (0, `0).

Here Q` := {(t, x) : t ∈ (0,T ), x ∈ (0, `(t))}, v is the control and
β > 0. Our objective is to control exactly to trajectories with a
positivity constraint.
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The controllability problem.

Phenomena modelled by Stefan equation

Liquid-solid interfaces.

Tumour growth.

Information diffusion in online social networks.
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The controllability problem.

State of the art

Controllability results of the Stefan’s problem by E. Fernández-Cara, D.
A. Souza and their collaborators regarding null controllability.

Controllability results of M. Kristic and his collaborators regarding
stability results with backstepping design controls.

Controllability with a positivity constraint, a research line initiated by E.
Trélat, E. Zuazua and their collaborators.

Controllability results to constant trajectories of the viscous Burgers
equation with one moving endpoint equation by B. Geshkovski and E.
Zuazua.

Controllability of fluid-structure systems, for instance by Fernández-Cara,
Takahashi, Tucsnak, etc.
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The controllability problem.

Contribution of our paper

From our knowledge, our result is the first one concerning the
exact control to non-constant trajectories in the context of a
free boundary parabolic system.

We work with a positivity constraint.

We prove a Carleman inequality for a system which has a
nonlocallity on the boundary condition. This is a novelty in
the literature.
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First steps on the proof of the exact controllability to trajectories.

First steps on the proof of the exact
controllability to trajectories.
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First steps on the proof of the exact controllability to trajectories.

Main strategy to solve the controllability problem

With a change of variables we obtain an equation in a
cylindrical domain instead of a free boundary domain.

Reduce the problem to a distributed control problem.

Linearize the equation in a neighbourhood of a trajectory.

Obtain the controllability of the linealized equation with the
help of a Carleman inequality.

Prove the exact controllability to trajectories with
Liusternik-Graves’ Inverse Theorem.
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First steps on the proof of the exact controllability to trajectories.

The system after changing of variable

Let us consider p(y , t) = u(y`(t), t) and q(t) = `(t)2. Then, the
system is equivalent to:



qpt − pyy +
y

β
py (1, ·)py = 0 in (0,T )× (0, 1),

p(0, ·) = v in (0,T ),
p(1, ·) = 0 in (0,T ),
p(· , 0) = p0 in (0, 1),
βqt + 2py (1, ·) = 0 in (0,T ),
q(0) = q0,

(1)
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First steps on the proof of the exact controllability to trajectories.

The control system in a neighbourhood of a trajectory

Let z = p − p and h = β
2

(q − q). Then, the control problem in the trajectory (z, h) is
given by:



q̄zt − zxx +
x

β
p̄x (1, ·)zx +

x

β
p̄xzx (1, ·) +

2

β
p̄th +

2

β
hzt +

x

β
zx (1, ·)zx = 0 in Q1,

z(0, ·) = v̂ in (0,T ),
z(1, ·) = 0 in (0,T ),
z(· , 0) = z0 in (0, 1),
ht + zx (1, ·) = 0 in (0,T ),
h(0) = h0,

We can prove the existence and uniqueness of solutions of such system with Galerkin’s
method. Here Q1 := (0,T )× (0, 1).
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First steps on the proof of the exact controllability to trajectories.

The linearized control system with a control that acts on
the interior

When we linearized the previous system and prolong the domain to obtain the
boundary control we obtain the following system:



q̄zt − zxx +
x

β
p̄x (1, ·)zx +

x

β
p̄xzx (1, ·) +

2

β
p̄th = f1 + w1ω in (−1, 1)× (0,T ),

z(−1, ·) = 0 in (0,T ),
z(1, ·) = 0 in (0,T ),
z(·, 0) = z0 in (−1, 1),
ht + zx (1, ·) = f2 in (0,T ),
h(0) = h0,

where f1 and f2 belong to appropriate spaces of functions that decay exponentially as
t → T− and will be made precise below.
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First steps on the proof of the exact controllability to trajectories.

The adjoint system

The adjoint system is given by the following equations:



−q̄ϕt − ϕxx −
x

β
p̄x(1, ·)ϕx +

1

β
p̄x(1, ·)ϕ = g1 in (0,T )× (−1, 1),

ϕ(−1, ·) = 0 in (0,T ),

ϕ(1, ·) = γ +

∫ 1

−1

x

β
p̄x(x , ·)ϕ(x , ·) dx in (0,T ),

ϕ(·,T ) = ϕT in (−1, 1),

γt =

∫ 1

−1

2

β
p̄t(x , ·)ϕ(x , ·) dx + g2 in (0,T ),

γ(T ) = γT .

The proof of existence relies on Leray-Schauder Fixed Point Principle, and the
uniqueness on regularity estimates.
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First steps on the proof of the exact controllability to trajectories.

An important property of the adjoint system

When we multiply the solutions of such system by a cut-off
function κ(t) just depending on the time variable, we get a similar
system, so regularity estimates apply. This implies that we can
estimate the L2-norm of the system at a time t = 0 with the
L2-norm of (T/4, 3T/4).
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The Carlaman inequality

The Carleman inequality.
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The Carlaman inequality

Auxiliary weights

Let ω0 be a non-empty open set, with ω0 ⊂⊂ ω and let be a function η
in C 2([−1, 1]) satisfying

η > 0 in [−1, 1], min
x∈[−1,1]\ω0

|ηx(x)| > 0, η(−1) = η(1) = min
x∈[−1,1]

η(x).

Let us introduce the following associated weights:

α(x , t) :=
e2λm‖η‖∞ − eλ(m‖η‖∞+η(x))

t(T − t)
∀(x , t) ∈ (0,T )× (−1, 1),

ξ(x , t) :=
eλ(m‖η‖∞+η(x))

t(T − t)
∀(t, x) ∈ (0,T )× (−1, 1),

α̂(t) := max
x∈[−1,1]

α(x , t) = α(1, t) = α(−1, t) ∀t ∈ (0,T ),

ξ̂(t) := min
x∈[−1,1]

ξ(x , t) = ξ(1, t) = ξ(−1, t) ∀t ∈ (0,T ),

where λ > 0 is a sufficiently large constant (to be chosen later) and m > 1.
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The Carlaman inequality

The Carleman inequality
Let us assume that R ∈ L∞(0,T ; L2(−1, 1)), N ∈ W 1,∞(0,T ; L2(−1, 1)) and d ∈ C1([0,T ]) with
d(t) > d∗ > 0 for all t ∈ [0,T ]. There exist constants λ0 ≥ 1, s0 ≥ 1 and C0 > 0 such that, for any λ ≥ λ0,

any s ≥ s0(T + T 2), any (ψT , γT ) ∈ H1(−1, 1)× R satisfying ϕT (−1) = 0 and

ϕT (1) = γT + (N(·,T ), ϕT )2 and any source terms f ∈ L2(Q) and g ∈ L2(0,T ), the strong solution to:



ψt + d(t)ψxx = f in (0,T )× (−1, 1),

ψ(−1, ·) = 0 in (0,T ),

ψ(1, t) = γ(t) + (N(· , t), ψ(· , t))2 in (0,T ),

ψ(· ,T ) = ψT in (−1, 1)

γt (t)− (R(· , t), ψ(·, t))2 = g in (0,T ),

γ(T ) = γT

satisfies: ∫∫
Q

[
(sξ)−1(|ψxx |2 + |ψt |2) + λ

2(sξ)|ψx |2 + λ
4(sξ)3|ψ|2

]
e−2sα dx dt

+

∫ T

0

[
λ

3(sξ̂)3(|ψ(1, t)|2 + |γ|2) + λ(sξ̂)(|ψx (−1, t)|2 + |ψx (1, t)|2)
]
e−2sα̂ dt

≤ C0

(
s3
λ

4
∫∫

(0,T )×ω
ξ

3|ψ|2e−2sα dx dt +

∫∫
Q
|f |2e−2sα dx dt +

∫ T

0
|g|2e−2sα̂ dt

)
.
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The Carlaman inequality

Steps of the proof of the Carleman inequality

Start the proof from scratch; that is, from the equation satisfied by w = e−sαψ.

Replicate the steps of the heat equation for the terms in the interior and for the
boundary terms of w and wx .

When considering the boundary terms there is a term given by 2
∫ T

0 dwtwx . For
that, we must consider that:

wt = −sαtw + e−sαψt ,

so with Cauchy-Schwarz inequality we leave a boundary term with ψt on the
right-hand side.

We perform the Carleman estimate as usual, though leaving ψt on the
right-hand side. We also revert the change of variables.

ψt(1, t) can be written in terms of ψ and on the integral of ψt , and with that
the boundary term is absorbed.

We add γ as γ = ψ(1, t)− (N(·, t), ψ(·, t))2.
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The Carlaman inequality

Step 1: starting from scratch.

Let w = e−sαψ. Then,

e−sαf − sdαxxw =[dwxx + (sαt + s2dα2
x)w ]

+ [wt + 2sdαxwx ].
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The Carlaman inequality

Step 2: integrating by parts

After integrating by parts before using the boundary conditions we get that:

2(dwxx + (sαt + s2dα2
x )w ,wt + 2sdαxwx ) =

∫∫
Q

(−2sd2αxx + dt)|wx |2

+

∫∫
Q

(
−sαtt − s2(dα2

x )t − 2s2d(αxαt)x − 6s3d2α2
xαxx

)
|w |2

+

∫ T

0

[
2dwtwx + 2sd2αx |wx |2 + 2s2dαx (αt + sdα2

x )|w |2
]x=1

x=−1
.

On the boundary
αx · n = −∂nηξ > 0,

so the only boundary term which is not positive is
∫ T

0 2dwtwx .

Jon Asier Bárcena-Petisco (University of the Basque Country UPV/EHU)

Exact controllability to the trajectories of the one-phase Stefan problem.



The controllability problem First steps Carleman Exact controllability

The Carlaman inequality

Step 2: integrating by parts

After integrating by parts before using the boundary conditions we get that:

2(dwxx + (sαt + s2dα2
x )w ,wt + 2sdαxwx ) =

∫∫
Q

(−2sd2αxx + dt)|wx |2

+

∫∫
Q

(
−sαtt − s2(dα2

x )t − 2s2d(αxαt)x − 6s3d2α2
xαxx

)
|w |2

+

∫ T

0

[
2dwtwx + 2sd2αx |wx |2 + 2s2dαx (αt + sdα2

x )|w |2
]x=1

x=−1
.

On the boundary
αx · n = −∂nηξ > 0,

so the only boundary term which is not positive is
∫ T

0 2dwtwx .
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The Carlaman inequality

Step 3: dealing with the boundary term

First, because of the Dirichlet boundary condition on the left
hand-side wt(−1, ·) = 0 on (0,T ). As for the boundary condition
on x = 1, considering that wt = −sαtw + e−sαψt :∫ T

0
2dwtwx

∣∣
x=1
≥2

∫ T

0
dψtwxe

−sα̂∣∣
x=1

− Cs3

∫ T

0
ξ̂3|w |2

∣∣
x=1
− Cs

∫ T

0
ξ̂|wx |2

∣∣
x=1

The second and third term can be absorbed for λ large enough. As
for the first term, we use a weighted Cauchy-Schwartz to absorb
wx and leave ψt for the moment.
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The Carlaman inequality

Step 4: adding the higher order derivatives

After absorbing the terms, we may add the higher order derivatives as usual. In
fact, we have:

∫∫
Q

s−1ξ−1(|wt |2 + |wxx |2) +

∫∫
Q

sλ2ξ|wx |2 + s3λ4

∫∫
Q

ξ3|w |2

+ sλ

∫ T

0

ξ̂|wx |2
∣∣
x=−1

+

∫ T

0

(
s3λ3ξ̂3|w |2 + sλξ̂|wx |2

) ∣∣
x=1

≤ C

(
‖e−sαf ‖2

L2(Q) + s3λ4

∫ T

0

ξ3|w |2 + s−1λ−1

∫ T

0

ξ−1e−2sα|ψt |2
∣∣
x=1

)
.
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The Carlaman inequality

Step 5: coming back to the variable

Let us consider ψ = e−sαw . With some easy absorptions, we obtain that:

I (s, λ, ψ) ≤ C

(∫∫
Q

e−2sα|f |2 + s3λ4

∫ T

0

e−2sαξ3|ψ|2

+ s−1λ−1

∫ T

0

ξ̂−1e−2sα̂|ψt |2
∣∣
x=1

)
,

where we have set:

I (s, λ, ψ) :=

∫∫
Q

e−2sα
[
(sξ)−1(|ψt |2 + |ψxx |2) + sλ2ξ|ψx |2 + s3λ4ξ3|ψ|2

]
+s3λ3

∫ T

0

e−2sα̂ξ̂3|ψ|2
∣∣
x=1

+ sλ

∫ T

0

e−2sα̂ξ̂|ψx |2
∣∣
x=−1

+ sλ

∫ T

0

e−2sα̂ξ̂|ψx |2
∣∣
x=1

.
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The Carlaman inequality

Step 6: absorption of the boundary term

We must absorb the term:

s−1λ−1

∫ T

0
ξ−1e−2sα|ψt |2

∣∣
x=1

with ∫∫
Q
e−2sα

[
(sξ)−1|ψt |2 + s3λ4ξ3|ψ|2

]
.

For that, it suffices to use:

ψt = g + (R(·, t), ψ(·, t))2 + ∂t(N(·, t), ψ(·, t))2

and recall that the minimum of the weights is obtained on the
boundary.
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The Carlaman inequality

Step 7: addition of γ

Since γ = ψ(1, t)− (N(·, t), ψ(·, t))2, we have that:

s3λ3

∫ T

0
e−2sα̂ξ̂3|γ|2

≤ C

(
s3λ3

∫ T

0
e−2sα̂ξ̂3|ψ|2

∣∣
x=1

+ s3λ4

∫∫
Q
e−2sαξ3|ψ|2,

)
so we can add that term on the left-hand side.

Jon Asier Bárcena-Petisco (University of the Basque Country UPV/EHU)

Exact controllability to the trajectories of the one-phase Stefan problem.



The controllability problem First steps Carleman Exact controllability

Exact controllability to trajectories of the non-linear system

Exact controllability to trajectories of the
non-linear system.
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Exact controllability to trajectories of the non-linear system

A Carleman inequality for our system

Corollary

Assume that (p̄, q̄) belong to the space [W 1,∞(0,T ; H1(−1, 1)) ∩ H
1,2
0 (Q)]×W 1,∞(0,T ) with

q(t) ∈ (q∗,+∞) for all t ∈ [0,T ]. There exist constants λ0 ≥ 1, s0 ≥ 1 and C0 > 0 such that, for any

λ ≥ λ0, any s ≥ s0(T + T 2), any ϕT ∈ H1(−1, 1) any γT ∈ R with

ϕT (−1) = 0 and ϕT (1) = 2γT +
1

β

∫ 1

−1
p̄x (x,T )xϕT (x) dx

and any right hand sides g1 ∈ L2(Q) and g2 ∈ L2(0,T ), the strong solution to the adjoint system satisfies:

∫∫
Q

[
(sξ)−1(|ϕt |2 + |ϕxx |2) + λ

2(sξ)|ϕx |2 + λ
4(sξ)3|ϕ|2

]
e−2sα dx dt

+

∫ T

0

[
|γt |2 + λ(sξ̂)

(
|ϕx (−1, t)|2 + |ϕx (1, t)|2

)
+ λ

3(sξ̂)3
(
|ϕ(1, t)|2 + |γ|2

)]
e−2sα̂ dt

≤ C0

(∫∫
Q
|g1|

2e−2sα dx dt +

∫ T

0
|g2|

2e−2sα̂ dt + s3
λ

4
∫

(0,T )×ω
ξ

3|ϕ|2e−2sα dx dt

)
.
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Exact controllability to trajectories of the non-linear system

Sketch of the proof

Proof.

Let us apply the proven Carleman with the following data:

d =
1

q̄
, f = −1

q̄

[
g1 +

p̄x(1, ·)
β

(xϕx − ϕ)

]
,

N(x , t) =
x

β
p̄x(x , t), R =

2

β
p̄t and g = g2.
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Some additional weights

Let us define some additional weights:let the function r = r(t) be given by

r(t) =

{
T 2/4 in [0,T/2],

t(T − t) in [T/2,T ]

and let us set D1 = (−1, 1)× (0,T/2), D2 = (−1, 1)× (T/2,T ),

ζ(x , t) :=
e2λm‖η‖∞ − eλ(m‖η‖∞+η(x))

r(t)
and µ(x , t) :=

eλ(m‖η‖∞+η(x))

r(t)
∀(x , t) ∈ Q,

for η defined previously. Let us also introduce the notation:

ζ̂(t) := max
x∈[−1,1]

ζ(x , t), µ̂(t) := min
x∈[−1,1]

µ(x , t), ∀t ∈ (0,T ),

ζ∗(t) := min
x∈[−1,1]

ζ(x , t), µ∗(t) := max
x∈[−1,1]

µ(x , t), ∀t ∈ (0,T ).
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Estimate of the time t = 0

Proposition

Under the conditions in Corollary 1, the unique strong solution to the adjoint system satisfies:

+

∫ T

0

[
|γt |2 + µ̂

(
|ϕx (−1, t)|2 + |ϕx (1, t)|2

)
+ µ̂

3
(
|γ|2 + |ϕ(1, t)|2

)]
e−2sζ̂ dt

+

∫∫
Q

[
µ
−1(|ϕt |2 + |ϕxx |2) + µ|ϕx |2 + µ

3|ϕ|2
]
e−2sζ dx dt + ‖ϕ(· , 0)‖2

H1(−1,1)
+ |γ(0)|2

≤ C2

(∫∫
Q
|g1|

2e−2sζ∗ dx dt +

∫ T

0
|g2|

2e−2sζ̂ dt +

∫∫
(0,T )×ω

(µ∗)3|ϕ|2e−2sζ∗ dx dt

)
,

for a positive constant C2 depending on T , s and λ, with s and λ as in Corollary 1.

Proof.

The proof relies on the previous Carleman inequality and regularity estimates
for the adjoint system.
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Additional weights and operators

Let us consider the weights:

ρ0(t) := esζ
∗(t), ρ1(t) := esζ̂(t), ρ2(t) := µ∗−3/2(t)esζ

∗(t) ∀t ∈ (0,T ),

ρ3(t) := esζ̂(t)µ̂−3/2(t), ρ4(t) := ρ
1/2
3 (t) ∀t ∈ (0,T ).

Let us introduce the linear operators

L1(z, h) := q̄zt−zxx +
x

β
p̄x (1, ·)zx +

x

β
p̄xzx (1, ·)+

2

β
p̄th and L2(z, h) := ht +zx (1, ·)

and the space E , given by

E :=
{

(z, h,w) ∈ L2
ρ0

(Q)× L2
ρ1

(0,T )× L2
ρ2

(ω × (0,T )) :

L1(z, h)− w1ω ∈ L2
ρ3

(Q),L2(z, h) ∈ L2
ρ3

(0,T ), h ∈ H1
ρ4

(0,T ) and z ∈ H1,2
0,ρ4

(Q)
}
.
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Null controllability of the linearized system around a
trajectory

Proposition

Assume that (f1, f2) ∈ L2
ρ3

(Q)× L2
ρ3

(0,T ) and that
(z0, h0) ∈ H1

0 (−1, 1)× R. Then, there exists a solution to the
linearized system around a trajectory satisfying (z , h) ∈ E .

The proof is based on duality and regularity estimates to ensure
that the solutions belong to the the stated spaces.
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Controllability of the non-linear system

We shall apply Liusternik-Graves’ Inverse Function Theorem with
B1 = E , B2 = F1 × F2 and

Λ(z , h,w) =
(
L1(z , h)− w1ω +

2

β
hzt +

x

β
zx(1, ·)zx ,

L2(z , h), z(·, 0), h(0)
) (2)

for every (z , h,w) ∈ E . Here, we have introduced the Hilbert
spaces F1 := L2

ρ3
(Q)× L2

ρ3
(0,T ) for the right hand sides

and F2 := H1
0 (−1, 1)× R for the initial conditions.
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Thank you for your attention!
Is there any question?
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