Controllability from the exterior of fractional heat equation

Sebastián Zamorano

Departamento de Matemática y Ciencia de la Computación Universidad de Santiago de Chile

IX Partial differential equations, optimal design and numerics 2022, Aug 21 – Sep 02 Benasque – Spain

Plan of the Talk

2 Null controllability without constraints

3 Further comments and future work

- Controllability under positive constraints
- Numerical simulations
- Future work

Plan of the Talk

Null controllability without constraints

3) Further comments and future work

- Controllability under positive constraints
- Numerical simulations
- Future work

Fractional Laplace operator

► The fractional Laplacian (-∂_x)^s, with 0 < s < 1, is defined by the following singular integral</p>

$$(-\partial_x)^s u(x) := C_{1,s} \operatorname{P.V.} \int_{\mathbb{R}} \frac{u(x) - u(y)}{|x - y|^{1+2s}} dy, \ x \in \mathbb{R}$$

where $C_{1,s}$ is a normalization constant.

Fractional Laplace operator

► The fractional Laplacian (-∂_x)^s, with 0 < s < 1, is defined by the following singular integral</p>

$$(-\partial_x)^s u(x) := C_{1,s} \operatorname{P.V.} \int_{\mathbb{R}} \frac{u(x) - u(y)}{|x - y|^{1+2s}} dy, \ x \in \mathbb{R}.$$

where $C_{1,s}$ is a normalization constant.

The N-dimensional fractional heat equation

 $\partial_t u + (-\Delta)^s u = 0$

naturally arises from a probabilistic process in which a particle moves randomly in the space subject to a probability that allows long jumps with a polynomial tail.

Applications

- G.M. Viswanathan, V. Afanasyev, S.V. Buldyrev, E.J. Murphy, P.A. Prince, and H. Eugene Stanley. Lévy flight search patterns of wandering albatrosses. Nature, 381(6581): 413–415, 1996.
- Nicolas E. Humphries et al. Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature, 465(7301):1066–1069, 2010.

Fractional heat equation

▶ We are interested in the controllability from the exterior of the fractional heat equation in the interval (-1,1). That is,

$$\begin{cases} \partial_t u + (-\partial_x^2)^s u = 0 & \text{ in } (-1,1) \times (0,T), \\ u = g\chi_{\mathcal{O} \times (0,T)} & \text{ in } (\mathbb{R} \setminus (-1,1)) \times (0,T), \\ u(\cdot,0) = u_0 & \text{ in } (-1,1). \end{cases}$$

$$\begin{cases} \partial_t u - \Delta u = 0 & \text{in } \Omega \times (0, T), \\ u = g & \text{on } \partial\Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega. \end{cases} \begin{cases} \partial_t u + (-\Delta)^s u = 0 & \text{in } \Omega \times (0, T), \\ u = g & \text{on } \partial\Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega. \end{cases}$$

$$\begin{cases} \partial_t u - \Delta u = 0 & \text{in } \Omega \times (0, T), \\ u = g & \text{on } \partial\Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega. \end{cases} \begin{cases} \partial_t u + (-\Delta)^s u = 0 & \text{in } \Omega \times (0, T), \\ u = g & \text{on } \partial\Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega. \end{cases}$$

► The following Dirichlet problem

$$\begin{cases} (-\Delta)^s u = f & \text{ in } \Omega, \\ u = 0 & \text{ on } \frac{\partial \Omega}{\partial \Omega}. \end{cases}$$

$$\begin{cases} \partial_t u - \Delta u = 0 & \text{in } \Omega \times (0, T), \\ u = g & \text{on } \partial\Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega. \end{cases} \begin{cases} \partial_t u + (-\Delta)^s u = 0 & \text{in } \Omega \times (0, T), \\ u = g & \text{on } \partial\Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega. \end{cases}$$

► The following Dirichlet problem

$$\begin{cases} (-\Delta)^s u = f & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega. \end{cases}$$
 is ILL POSED.

$$\begin{cases} \partial_t u - \Delta u = 0 & \text{in } \Omega \times (0, T), \\ u = g & \text{on } \partial\Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega. \end{cases} \begin{cases} \partial_t u + (-\Delta)^s u = 0 & \text{in } \Omega \times (0, T), \\ u = g & \text{on } \partial\Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega. \end{cases}$$

The following Dirichlet problem

$$\begin{cases} (-\Delta)^s u = f & \text{ in } \Omega, \\ u = 0 & \text{ on } \frac{\partial \Omega}{\partial \Omega}. \end{cases}$$
 is ILL POSED.

Then, the EXTERIOR CONDITION is the right notion that replaces the classical nonhomogeneous boundary problems associated with local operators.

Main results

▶ Null controllability without constraints with $g \in L^2(0, T; H^s((-1, 1)^c))$.

Main results

- ▶ Null controllability without constraints with $g \in L^2(0, T; H^s((-1, 1)^c))$.
- ▶ Null controllability with L^{∞} -controls.

Main results

- ▶ Null controllability without constraints with $g \in L^2(0, T; H^s((-1, 1)^c))$.
- ▶ Null controllability with L^{∞} -controls.
- Controllability to the trajectories under positive L^{∞} -controls.

Fractional heat equation

 U. Biccari and V. Santa-María (IMA J. Math. Control Inform. 2019): null controllability with interior control.

Fractional heat equation

- U. Biccari and V. Santa-María (IMA J. Math. Control Inform. 2019): null controllability with interior control.
- ► U. Biccari, M. Warma, and E. Zuazua (Commum. Pure Appl. Anal. 2020): controllability under positivity constraints with interior control.

Fractional heat equation

- U. Biccari and V. Santa-María (IMA J. Math. Control Inform. 2019): null controllability with interior control.
- ► U. Biccari, M. Warma, and E. Zuazua (Commum. Pure Appl. Anal. 2020): controllability under positivity constraints with interior control.

Heat equation

J. Loheac, E. Trélat, and E. Zuazua (Math. Models Methods Appl. Sci. 2017): controllability under positive constraints for linear problem.

Fractional heat equation

- U. Biccari and V. Santa-María (IMA J. Math. Control Inform. 2019): null controllability with interior control.
- ► U. Biccari, M. Warma, and E. Zuazua (Commum. Pure Appl. Anal. 2020): controllability under positivity constraints with interior control.

Heat equation

- J. Loheac, E. Trélat, and E. Zuazua (Math. Models Methods Appl. Sci. 2017): controllability under positive constraints for linear problem.
- D. Pighin and E. Zuazua (Math. Control. Relat. Fields 2018): controllability under positive constraints for semilinear problem.

Plan of the Talk

2 Null controllability without constraints

- Further comments and future work
 - Controllability under positive constraints
 - Numerical simulations
 - Future work

Joint work with M. Warma

We are interested in the null controllability of the fractional heat equation in the interval (-1,1). That is,

(1) $\begin{cases} \partial_t u + (-\partial_x^2)^s u = 0 & \text{in } (-1,1) \times (0,T), \\ u = g \chi_{\mathcal{O} \times (0,T)} & \text{in } (\mathbb{R} \setminus (-1,1)) \times (0,T), \\ u(\cdot,0) = u_0 & \text{in } (-1,1). \end{cases}$

Joint work with M. Warma

We are interested in the null controllability of the fractional heat equation in the interval (-1,1). That is,

(1)
$$\begin{cases} \partial_t u + (-\partial_x^2)^s u = 0 & \text{ in } (-1,1) \times (0,T), \\ u = g\chi_{\mathcal{O} \times (0,T)} & \text{ in } (\mathbb{R} \setminus (-1,1)) \times (0,T), \\ u(\cdot,0) = u_0 & \text{ in } (-1,1). \end{cases}$$

More precisely, given u_0 , find g such that the solution of (1) satisfies:

$$u(\cdot, T) = 0$$
, in $(-1, 1)$.

Here $\mathcal{O} \subset (\mathbb{R} \setminus (-1, 1))$.

Basic properties of fractional Laplace operator

• Let $(-\Delta)_D^s$ be the selfadjoint operator in $L^2(\Omega)$ with domain

$$D((-\Delta)^s_D) := \left\{ u \in H^s_0(\overline{\Omega}), \ (-\Delta)^s u \in L^2(\Omega) \right\}, \quad (-\Delta)^s_D u := (-\Delta)^s u.$$

Basic properties of fractional Laplace operator

• Let $(-\Delta)_D^s$ be the selfadjoint operator in $L^2(\Omega)$ with domain

$$D((-\Delta)^s_D) := \left\{ u \in H^s_0(\overline{\Omega}), \ (-\Delta)^s u \in L^2(\Omega) \right\}, \quad (-\Delta)^s_D u := (-\Delta)^s u.$$

(-Δ)^s_D has a compact resolvent and its eigenvalues form a non-decreasing sequence of real numbers 0 < λ₁ ≤ λ₂ ≤ ··· ≤ λ_n ≤ ··· satisfying lim_{n→∞} λ_n = ∞. In addition, the eigenvalues are of finite multiplicity.

Basic properties of fractional Laplace operator

• Let $(-\Delta)_D^s$ be the selfadjoint operator in $L^2(\Omega)$ with domain

$$D((-\Delta)^s_D) := \left\{ u \in H^s_0(\overline{\Omega}), \ (-\Delta)^s u \in L^2(\Omega) \right\}, \quad (-\Delta)^s_D u := (-\Delta)^s u.$$

- (-Δ)^s_D has a compact resolvent and its eigenvalues form a non-decreasing sequence of real numbers 0 < λ₁ ≤ λ₂ ≤ ··· ≤ λ_n ≤ ··· satisfying lim_{n→∞} λ_n = ∞. In addition, the eigenvalues are of finite multiplicity.
- Let $(\varphi_n)_{n\in\mathbb{N}}$ be the orthonormal basis of eigenfunctions associated with $(\lambda_n)_{n\in\mathbb{N}}$. Then $\varphi_n \in D((-\Delta)^s_D)$ for every $n \in \mathbb{N}$, $(\varphi_n)_{n\in\mathbb{N}}$ is total in $L^2(\Omega)$ and satisfies

$$\begin{cases} (-\Delta)^s \varphi_n = \lambda_n \varphi_n & \text{ in } \Omega, \\ \varphi_n = 0 & \text{ in } \Omega^c. \end{cases}$$

Theorem

Let T > 0 be any real number. Then for every $u_0 \in L^2(-1, 1)$ and $g \in L^2((0, T); H^s((-1, 1)^c))$, the system (1) has a unique weak solution $u \in C([0, T]; L^2(-1, 1))$ given by

$$u(x,t) = \sum_{n=1}^{\infty} u_{0,n} e^{-\lambda_n t} \varphi_n(x) + \sum_{n=1}^{\infty} \left(\int_0^t (g(\cdot,\tau), \mathcal{N}_s \varphi_n)_{L^2((-1,1)^c)} e^{-\lambda_n((t-\tau))} d\tau \right) \varphi_n(x),$$

Theorem

Let T > 0 be any real number. Then for every $u_0 \in L^2(-1, 1)$ and $g \in L^2((0, T); H^s((-1, 1)^c))$, the system (1) has a unique weak solution $u \in C([0, T]; L^2(-1, 1))$ given by

$$u(x,t) = \sum_{n=1}^{\infty} u_{0,n} e^{-\lambda_n t} \varphi_n(x) + \sum_{n=1}^{\infty} \left(\int_0^t (g(\cdot,\tau), \mathcal{N}_{\mathfrak{s}} \varphi_n)_{L^2((-1,1)^c)} e^{-\lambda_n ((t-\tau)} d\tau \right) \varphi_n(x),$$

where the *non-local normal derivative* \mathcal{N}_s is given by

$$\mathcal{N}_{s}\varphi_{n}(x):=C_{1,s}\int_{\Omega}\frac{\varphi_{n}(x)-\varphi_{n}(y)}{|x-y|^{1+2s}}\,dy, \quad x\in(-1,1)^{c}.$$

Adjoint problem

Using the integration by parts formula, we have that the following backward system

(2)
$$\begin{cases} -\partial_t \psi + (-\partial_x^2)^s \psi = 0 & \text{ in } (-1,1) \times (0,T), \\ \psi = 0 & \text{ in } (\mathbb{R} \setminus (-1,1)) \times (0,T), \\ \psi(\cdot,T) = \psi_0 & \text{ in } (-1,1), \end{cases}$$

can be viewed as the dual system associated with (1).

Theorem

Let T > 0 be a real number and $\psi_0 \in L^2(-1, 1)$. Then the system (2) has a unique weak solution $\psi \in C([0, T]; L^2(-1, 1))$ which is given by

$$\psi(x,t) = \sum_{n=1}^{\infty} \psi_{0,n} e^{-\lambda_n(\tau-t)} \varphi_n(x).$$

In addition, there is a constant C > 0 such that for all $t \in [0, T]$,

$$\|\psi(\cdot,t)\|_{L^2(-1,1)} \leq C \|\psi_0\|_{L^2(-1,1)}.$$

Controllability Identity

Lemma

The system (1) is null controllable at time T > 0 if and only if for each initial datum $u_0 \in L^2(-1,1)$, there exists a control function $g \in L^2((0,T); H^s((-1,1)^c))$ such that the solution ψ of the dual system (2) satisfies

(3)
$$\int_{-1}^{1} u_0(x)\psi(x,0) \ dx = \int_{0}^{T} \int_{\mathcal{O}} g(x,t) \mathcal{N}_{s} \psi(x,t) \ dx dt,$$

for each $\psi_0 \in L^2(-1,1)$,

Controllability Identity

Lemma

The system (1) is null controllable at time T > 0 if and only if for each initial datum $u_0 \in L^2(-1,1)$, there exists a control function $g \in L^2((0,T); H^s((-1,1)^c))$ such that the solution ψ of the dual system (2) satisfies

(3)
$$\int_{-1}^{1} u_0(x)\psi(x,0) \ dx = \int_{0}^{T} \int_{\mathcal{O}} g(x,t) \mathcal{N}_s \psi(x,t) \ dx dt,$$

for each $\psi_0 \in L^2(-1,1)$, where the *non-local normal derivative* \mathcal{N}_s is given by

$$\begin{split} \mathcal{N}_{s}\psi(x,t) &:= C_{1,s} \int_{\Omega} \frac{\psi(x,t) - \psi(y,t)}{|x-y|^{1+2s}} \, dy, \quad x \in (-1,1)^{c} \\ &= \sum_{n=1}^{\infty} \psi_{0,n} e^{-\lambda_{n}(T-t)} \mathcal{N}_{s} \varphi_{n}(x). \end{split}$$

0200000100000000

Main result

Theorem 1 (M. Warma and S.Z.)

Let 0 < s < 1 and let $\mathcal{O} \subset (\mathbb{R} \setminus (-1, 1))$ be an arbitrary nonempty open set. Then the following assertions hold.

(a) If $\frac{1}{2} < s < 1$, then the system (1) is null controllable at any time T > 0.

(b) If $0 < s \le \frac{1}{2}$, then the system (1) is not null controllable at time T > 0.

(c) If $\frac{1}{2} < s < 1$, then the system (1) is exactly controllable to the trajectories at any time T > 0.

Proof of Theorem

The system (1) is null controllable if and only if the following observability inequality holds for the dual system: there exists a constant C > 0 such that

(4)
$$\|\psi(\cdot,0)\|_{L^2(-1,1)}^2 \leq C \int_0^T \int_{\mathcal{O}} |\mathcal{N}_s \psi(x,t)|^2 dx dt.$$

Proof of Theorem

The system (1) is null controllable if and only if the following observability inequality holds for the dual system: there exists a constant C > 0 such that

(4)
$$\|\psi(\cdot,0)\|_{L^2(-1,1)}^2 \leq C \int_0^T \int_{\mathcal{O}} |\mathcal{N}_s \psi(x,t)|^2 dx dt.$$

Using the representations of ψ and $N_s\psi$, and employing the orthonormality of the eigenfunctions in $L^2(-1,1)$, then the observability inequality (4) becomes

(5)
$$\sum_{n=1}^{\infty} |\psi_{0,n}|^2 e^{-2\lambda_n T} \leq C \int_0^T \int_{\mathcal{O}} \left| \sum_{n=1}^{\infty} \psi_{0,n} e^{-\lambda_n (T-t)} \mathcal{N}_s \varphi_n(x) \right|^2 dx dt.$$

Proof of Theorem...

It is a well known result for parabolic equations, that an inequality of the type (5) holds if and only if the eigenvalues $\{\lambda_n\}_{n\in\mathbb{N}}$ and the eigenfunctions $\{\varphi_n\}_{n\in\mathbb{N}}$ satisfy the following Müntz conditions

(6)
$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty, \quad \text{and} \quad \|\mathcal{N}_s \varphi_n\|_{L^2(\mathcal{O})} \ge \eta > 0, \quad \forall n \in \mathbb{N}.$$

Proof of Theorem...

The eigenvalues $\{\lambda_n\}_{n\geq 1}$ satisfy¹

(7)
$$\lambda_n = \left(\frac{n\pi}{2} - \frac{(2-2s)\pi}{8}\right)^{2s} + O\left(\frac{1}{n}\right) \text{ as } n \to \infty.$$

Therefore, we have the following two situations (assuming that the nonlocal normal derivative is uniformly bounded by below).

- If 0 < s ≤ ¹/₂, then the series (6) will have the behavior of the harmonic series, which implies that it is divergent.
- On the other hand, if ¹/₂ < s < 1, hence, 2s > 1, then using (7) we can deduce that the series (6) is convergent.

The proof of Parts (a) and (b) is complete.

 $^{^1\}text{Mateusz}$ Kwaśnicki . Eigenvalues of the fractional Laplace operator in the interval. J. Functional Anal. **262** 2012

Theorem 2 (M. Warma and S.Z.)

Let $\{\varphi_k\}_{k\in\mathbb{N}}$ be the orthogonal basis of normalized eigenfunctions associated with the eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}}$. Then, for every nonempty open set $\mathcal{O} \subset (\mathbb{R} \setminus (-1, 1))$, there exists a scalar $\eta > 0$ such that for every $k \in \mathbb{N}$, the function $\mathcal{N}_s \varphi_k$ is uniformly bounded from below by η in $L^2(\mathcal{O})$. Namely,

 $\exists \eta > 0, \forall k \in \mathbb{N}, \|\mathcal{N}_{s}\varphi_{k}\|_{L^{2}(\mathcal{O})} \geq \eta.$

Theorem 2 (M. Warma and S.Z.)

Let $\{\varphi_k\}_{k\in\mathbb{N}}$ be the orthogonal basis of normalized eigenfunctions associated with the eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}}$. Then, for every nonempty open set $\mathcal{O} \subset (\mathbb{R} \setminus (-1, 1))$, there exists a scalar $\eta > 0$ such that for every $k \in \mathbb{N}$, the function $\mathcal{N}_s \varphi_k$ is uniformly bounded from below by η in $L^2(\mathcal{O})$. Namely,

 $\exists \eta > 0, \forall k \in \mathbb{N}, \|\mathcal{N}_{s}\varphi_{k}\|_{L^{2}(\mathcal{O})} \geq \eta.$

Proof: Main Ingredients

• Approximation of the eigenfunctions $\{\varphi_k\}_k$ of fractional Laplacian:

$$\|\varrho_k - \varphi_k\|_{L^2(-1,1)} \le \begin{cases} rac{C(1-s)}{k} & \text{when } rac{1}{2} \le s < 1 \\ rac{C(1-s)}{k^{2s}} & \text{when } 0 < s < rac{1}{2}. \end{cases}$$

UNIVERSIDAD DE SANTIAGO DE CHILE

Continuation...

Arguing by contradiction: there is a constant C > 0 independent of n such that for n large enough, we have

$$\|\mathcal{N}_{s}\varphi_{k_{n}}\|_{H^{-s}(\mathcal{O})}\leq\frac{C}{n}.$$

Let the operator L be defined by

$$L: H^{s}_{0}(\overline{\Omega}) \to H^{-s}(\mathcal{O}), \ v \mapsto Lv := ((-\partial_{x}^{2})^{s}v)|_{\mathcal{O}} = (\mathcal{N}_{s}v)|_{\mathcal{O}}$$

It has been shown² that the operator L is compact, injective with dense range.

²T. Ghosh, A. Rüland, M. Salo, and G. Uhlmann. Uniqueness and reconstruction for the fractional Calderón problem with a single measurement. J. Funct. Anal. **279**(1) 2020

Plan of the Talk

Null controllability without constraints

3 Further comments and future work

- Controllability under positive constraints
- Numerical simulations
- Future work

Joint work with H. Antil, U. Biccari, R. Ponce, M. Warma

In this part, we are concerned with the constrained controllability from the exterior of the one-dimensional non-local heat equation

(8) $\begin{cases} \partial_t u + (-\partial_x^2)^s u = 0 & \text{in } (-1,1) \times (0,T), \\ u = g\chi_{\mathcal{O}} & \text{in } (-1,1)^c \times (0,T), \\ u(\cdot,0) = u_0 & \text{in } (-1,1). \end{cases}$

Joint work with H. Antil, U. Biccari, R. Ponce, M. Warma

In this part, we are concerned with the constrained controllability from the exterior of the one-dimensional non-local heat equation

(8)
$$\begin{cases} \partial_t u + (-\partial_x^2)^s u = 0 & \text{in } (-1,1) \times (0,T), \\ u = g\chi_{\mathcal{O}} & \text{in } (-1,1)^c \times (0,T), \\ u(\cdot,0) = u_0 & \text{in } (-1,1). \end{cases}$$

Our principal goal is to analyze whether the parabolic equation (8) can be driven from any given initial datum $u_0 \in L^2(-1,1)$ to a desired final target by means of the L^{∞} -control action, but preserving some non-negativity constraints on the control and/or the state.

Let 1/2 < s < 1. System (8) is null controllable if and only if there exists a constant C = C(T) > 0 such that the following observability inequality

(9)
$$\|\psi(\cdot,0)\|_{L^2(-1,1)}^2 \leq C\left(\int_0^T \int_{\mathcal{O}} |\mathcal{N}_s\psi(\mathbf{x},t)|\,d\mathbf{x}dt\right)^2$$

holds for every $\psi_{\mathcal{T}} \in L^2(-1,1)$, where ψ is the unique weak solution of the dual problem.

Let 1/2 < s < 1. System (8) is null controllable if and only if there exists a constant C = C(T) > 0 such that the following observability inequality

(9)
$$\|\psi(\cdot,0)\|_{L^2(-1,1)}^2 \leq C\left(\int_0^T \int_{\mathcal{O}} |\mathcal{N}_s\psi(\mathbf{x},t)|\,dxdt\right)^2$$

holds for every $\psi_T \in L^2(-1,1)$, where ψ is the unique weak solution of the dual problem.

We prove that there exists a constant η > 0 such that for every k ∈ N, N_sφ_k is uniformly bounded from below by η in L¹(O). Namely,

 $\exists \eta > 0, \forall k \in \mathbb{N}, \|\mathcal{N}_{s}\varphi_{k}\|_{L^{1}(\mathcal{O})} \geq \eta.$

Let 1/2 < s < 1. System (8) is null controllable if and only if there exists a constant C = C(T) > 0 such that the following observability inequality

(9)
$$\|\psi(\cdot,0)\|_{L^2(-1,1)}^2 \leq C\left(\int_0^T \int_{\mathcal{O}} |\mathcal{N}_s\psi(\mathbf{x},t)|\,dxdt\right)^2$$

holds for every $\psi_T \in L^2(-1,1)$, where ψ is the unique weak solution of the dual problem.

We prove that there exists a constant η > 0 such that for every k ∈ N, N_sφ_k is uniformly bounded from below by η in L¹(O). Namely,

 $\exists \eta > 0, \forall k \in \mathbb{N}, \|\mathcal{N}_{s}\varphi_{k}\|_{L^{1}(\mathcal{O})} \geq \eta.$

• The dual system is L^1 -observable in time T.

Controllability to trajectories under positive constraints

Theorem

Let $\mathcal{O} \subset \overline{\mathcal{O}} \subset [-1,1]^c$ be an arbitrary nonempty bounded open set and s a real number such that 1/2 < s < 1. Let $0 < \hat{u}_0 \in L^2(-1,1)$ and an exterior control $\hat{g} \in L^{\infty}(\mathcal{O} \times (0,T))$ for which there is a positive constant α such that $\hat{g} \geq \alpha$ a.e. in $\mathcal{O} \times (0,T)$. Consider a positive trajectory \hat{u} of (8) with initial datum \hat{u}_0 and exterior condition \hat{g} .

Controllability to trajectories under positive constraints

Theorem

Let $\mathcal{O} \subset \overline{\mathcal{O}} \subset [-1,1]^c$ be an arbitrary nonempty bounded open set and s a real number such that 1/2 < s < 1. Let $0 < \hat{u}_0 \in L^2(-1,1)$ and an exterior control $\hat{g} \in L^{\infty}(\mathcal{O} \times (0,T))$ for which there is a positive constant α such that $\hat{g} \geq \alpha$ a.e. in $\mathcal{O} \times (0,T)$. Consider a positive trajectory \hat{u} of (8) with initial datum \hat{u}_0 and exterior condition \hat{g} .

Then, for every $u_0 \in L^2(-1,1)$ there exist T > 0 large enough and a non-negative control $g \in L^{\infty}(\mathcal{O} \times (0, T))$ such that the corresponding very weak solution u of (8) satisfies $u(\cdot, T) = \hat{u}(\cdot, T)$ a.e. in (-1, 1). In addition, if $u_0 \ge 0$ a.e. in (-1, 1), then $u \ge 0$ a.e. in $(-1, 1) \times (0, T)$.

According to previous Theorem the constrained controllability to trajectories holds true if the time horizon is large enough, let us define the minimal controllability time T_{min} by

(10) $T_{\min} := \inf \Big\{ T > 0 : \exists \ 0 \le g \in L^{\infty}((0, T); L^{\infty}(\mathcal{O})) \text{ such that } u(\cdot, T) = \widehat{u}(\cdot, T) \Big\}.$

According to previous Theorem the constrained controllability to trajectories holds true if the time horizon is large enough, let us define the minimal controllability time T_{min} by

(10)
$$\mathcal{T}_{\min} := \inf \Big\{ \mathcal{T} > 0 : \exists \ 0 \le g \in L^{\infty}((0, \mathcal{T}); L^{\infty}(\mathcal{O})) \text{ such that } u(\cdot, \mathcal{T}) = \widehat{u}(\cdot, \mathcal{T}) \Big\}.$$

Theorem

Let $T := T_{\min}$ be the minimal controllability time given by (10). Then, there exists a non-negative control $g \in \mathcal{M}(\mathcal{O} \times (0, T))$ such that the corresponding solution u of (8) satisfies $u(\cdot, T) = \hat{u}(\cdot, T)$ a.e. in (-1, 1).

Numerical simulations

Main idea:

Approximation of exterior (Dirichlet) control problem by parabolic Robin problem:

Let $n \in \mathbb{N}$ and y^n be the solution of the following Robin problem³

(11)
$$\begin{cases} \partial_t y^n + (-\partial_x^2)^s y^n = 0 & \text{ in } (-1,1) \times (0,T), \\ \mathcal{N}_s y^n + n y^n = ng & \text{ in } (\mathbb{R} \setminus (-1,1)) \times (0,T), \\ y^n(\cdot,0) = y_0 & \text{ in } (-1,1), \end{cases}$$

³H. Antil, D. Verma and M. Warma, External optimal control of nonlocal PDEs. Inverse Problems, **35**(8):084003, 35, 2020

Sebastián Zamorano

For the target trajectory, we consider

$$\widehat{u}(x,T) := \frac{\Gamma\left(\frac{1}{2}\right)2^{-2s}e^{T}}{\Gamma(1+s)\Gamma\left(\frac{1}{2}+s\right)}\left(1-|x|^{2}\right)_{+}^{s},$$

which is known to be the exact solution to the Dirichet problem evaluated at the final time T, i.e., \hat{u} satisfies

$$\begin{cases} \partial_t \widehat{u} + (-\partial_x^2)^s \widehat{u} = z_{exact} + e^t & \text{ in } (-1,1) \times (0,1), \\ \widehat{u} = z_{exact} & \text{ in } ((-2,2) \setminus (-1,1)) \times (0,1), \\ \widehat{u}(\cdot,0) = z_{exact}(\cdot,0) & \text{ in } (-1,1), \end{cases}$$

where

$$z_{exact}(x,t) := \frac{\Gamma\left(\frac{1}{2}\right)2^{-2s}e^t}{\Gamma(1+s)\Gamma\left(\frac{1}{2}+s\right)}\left(1-|x|^2\right)_+^s.$$

Numerical simulations

To obtain T_{\min} , we consider the following constrained optimization problem:

(12) minimize T

subject to

(13)
$$\begin{cases} T > 0, \\ \partial_t u^n + (-\partial_x^2)^s u^n = 0 & \text{ in } (-1,1) \times (0,T), \\ \mathcal{N}_s u^n + n u^n = ng \chi_{\mathcal{O} \times (0,T)} & \text{ in } ((-2,2) \setminus (-1,1)) \times (0,T), \\ u^n(\cdot,0) = u_0 \ge 0 & \text{ in } (-1,1), \\ g \ge 0 & \text{ in } \mathcal{O} \times (0,T), \end{cases}$$

which we solve using CasADi open-source tool for nonlinear optimization and algorithmic differentiation.

Set the initial datum to be

$$u_0(x):=\frac{1}{2}\cos\left(\frac{\pi}{2}x\right).$$

In this case, we have that $u_0 < \widehat{u}(\cdot, T)$ in (-1, 1)

By solving (12) we obtain that $T_{\min} = 0.4739$.

By solving (12) we obtain that $T_{\min} = 0.4739$.

Figure: Evolution of the solution to (11) in the time interval $(0, T_{\min})$ with s = 0.8. The blue line is the initial configuration u_0 . The red line is the target $\hat{u}(\cdot, T)$ ($T = T_{\min}$) configuration. The black dashed line is the numerical solution at $T = T_{\min}$

Figure: Minimal-time control: space-time distribution of the control. The white lines delimit the dynamics region (-1, 1).

Figure: Minimal-time control: intensity of the impulses in logarithmic scale. In the (x, t) plane in blue the time t varies from t = 0 (bottom) to $t = T_{\min}$ (top).

Future work

For $s \in (0, \frac{1}{2})$, null controllability with moving control?

Future work

- For $s \in (0, \frac{1}{2})$, null controllability with moving control?
- Existence of minimal time T_{\min} .

Future work

- For $s \in (0, \frac{1}{2})$, null controllability with moving control?
- Existence of minimal time T_{\min} .
- Numerical analysis without the approximation of exterior Dirichlet control problem by parabolic Robin problem.

References

- M. Warma and S. Zamorano. Null controllability from the exterior of a one-dimensional nonlocal heat equation, Control & Cybernetics 48(3), 417-438 (2019).
- I. Antil, U. Biccari, R. Ponce, M. Warma, and S. Zamorano. Controllability properties from the exterior under positivity constraints for a 1–D fractional heat equation. Submitted 2019.
- U. Biccari, S. Zamorano, and E. Zuazua. *Adjoint formulation for the fractional exterior control problem*. In preparation.

