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Data is the stumbling block for deep learning in
computational biology

Deep neural networks (DNNs) are data hungry because of the huge
number of trainable parameters
• We may not have enough data for training complex DNNs
• Available data are heavily biased towards a few model systems
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Using synthetic data

If we can artificially generate synthetic data we can:
• Generate and train on arbitrarily large unbiased data sets
• Find out what is easy / hard / impossible to learn by DNNs
• Identify which network architectures work best
• Ask how much data is needed for training
• Test how biases in training effect the DNNs ability to

generalize
• Pre-train networks before final training on real data

Synthetic data need not be accurate – they only need to reflect the
complexity of the real problem!
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RNA secondary structure

Problems with RNA secondary structure prediction by energy
minimization:
• Parameters from limited number of experiments
• Ignores pseudo-knots, ignores tertiary structure
• Ignores non-nearest neighbor effects
• Poor treatment of non-canonical base pairs
• Poor performance on long-range base pairs
• . . .

Still good enough for tests with synthetic data

If DNNs can not be trained to emulate RNAfold, then they won’t
be able to solve the “real” RNA structure prediction problem.
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A simplified problem: Predicting pairedness

Try to predict which nucleotides are paired / unpaired
• Much smaller solution space → should be easier
• Similar to protein secondary structure prediction
• Tested several networks:

• fully connected feed-forward network on a sliding window
• 1D-convolutional network on sliding window
• bi-directional long-term short-term memory (BLSTM) network

• train on 80 000 random sequences with RNAfold structures
test on 20 000 independent random sequences
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Predicting pairedness

Modeltype Parameters Epochs Accuracy F1 MCC
BLSTM 1 Layer, 40 Neurons 43 0.667 0.594 0.166

1 Layer, 80 Neurons 27 0.664 0.589 0.168
3 Layers, 40 Neurons 38 0.676 0.609 0.207

FCFF Window 15 89 0.654 0.559 0.120
Window 35 94 0.659 0.559 0.118
Window 71 59 0.661 0.569 0.118

1D-CNN Window 15 67 0.660 0.588 0.156
Window 35 65 0.666 0.586 0.166
Window 71 30 0.668 0.580 0.170

BLSTM slightly better, but poor performance by all architectures
Probable reason: Predicting pairedness is not simpler than predicting the full
secondary structure right
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Predicting pair matrices
Approach chosen by most recent structure prediction DNNs
• Represent sequence by an n × n matrix of all possible pairs
• Use 2D convolutional networks on these matrices
• We chose the SPOT-RNA architecture 1

• Minimal post-processing: values > 0.5 represent base pair,
greedily remove base triples and pseudo-knots.

L
L

x8

2D B LSTM

ResNet

L

L

x Number 
of Kernels

L

L

x Dimension of 
hidden state

sigmoid 
function

A C U

A [ 1 , 0 , 0 , 0 
, 1 , 0 , 0 , 0 ]

[ 0 , 1 , 0 , 0
, 1 , 0 , 0 , 0 ]

[ 0 , 0 , 0 , 1
, 1 , 0 , 0 , 0 ]

C [ 0 , 1 , 0 , 0 
, 0 , 1 , 0 , 0 ]

[ 0 , 0 , 0 , 1
, 0 , 1 , 0 , 0 ]

U [ 0 , 0 , 0 , 1 
, 0 , 0 , 0 , 1 ]

= 

L

L

x Number of 
   neurons in FC layer

FC block

0 0 0 0 1

0 0 0 0

0 0 0

0 0

0

L

L

x1

=

1Singh et al., Nat. Commun., 2019
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Model Performance

Training and validation sets with fixed length n = 70
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What features are easy / hard to learn?

Do the structures predicted by the DNN look statistically similar to
the RNAfold ground truth?

Relative frequency of base pair types)
model / length GC CG AU UA GU UG NC

VRNA / 70 0.257 0.262 0.169 0.170 0.071 0.071 0.00
DNN / 70 0.258 0.260 0.170 0.172 0.070 0.070 9.63 · 10−5

VRNA / 100 0.262 0.255 0.173 0.170 0.068 0.071 0.00
DNN / 100 0.257 0.252 0.177 0.175 0.068 0.070 2.30 · 10−5

Learning the base pair frequencies is no problem at all
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What features are easy / hard to learn?
How about different loop types?

Frequency of bases in context
model / length paired EL BL HL IL ML

VRNA / 70 0.508 0.176 0.033 0.156 0.114 0.014
DNN / 70 0.445 0.222 0.027 0.161 0.127 0.019

VRNA / 100 0.541 0.123 0.031 0.143 0.126 0.035
DNN / 100 0.433 0.185 0.030 0.146 0.152 0.053

Average number of structural element
model / length helix EL BL HL IL ML

VRNA / 70 4.825 0.992 1.112 1.754 1.841 0.118
DNN / 70 4.354 0.993 0.840 1.730 1.686 0.098

VRNA / 100 7.132 0.991 1.586 2.314 2.889 0.343
DNN / 100 6.146 0.991 1.080 2.135 2.632 0.299

• Frequency and size of hairpin and interior loops match very well
• Network produces fewer, but larger multi-loops
• Number of base pairs does not match
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Multi loop length
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Pseudo-knots and base triples

• DNNs have no problem predicting pseudo-knots and base
triples – should be an advantage
• But can they learn, to predict the right amount?
• Our ground truth has no PKs, no base triples
• At length 100:

Almost 50% (975/2000) of structures contain a PK
75% (1512/2000) contain multi-pairs
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What features are easy / hard to learn?
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• An RNA structure can contain < n
2 pairs

• DNNs working on pair matrices naturally predict a quadratic
growth
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What features are easy / hard to learn?

Convolutional networks always focus on local features of the matrix
Therefore:
• local features (e.g. interior loops) are easiest to get right
• larger features (e.g. multi loops) are harder
• global properties (total number of pairs) are hardest to learn
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Biases in the training set

How do biases in the training set affect performance?
Example different length distributions:

Validation Training
1 2 3 4

1 0.64 0.61 0.64 0.63
2 0.59 0.58 0.60 0.57
3 0.61 0.59 0.62 0.59
4 0.71 0.68 0.70 0.75

train 0.72 0.66 0.71 0.87
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The bpRNA dataset

Do we have large enough data sets? Use bpRNA2!

• over 100 000 sequence/structure
pairs
• Collected from 7 databases
• CRW: SSU, LSU, and 5S rRNAs
• RFAM: 2588 families

but 82% rRNA, 9% tRNA

CRW: 55600

RFAM: 43273

SRP: 959

tmRNA: 728

PDB : 669

tRNA: 634

RNP: 466

82% rRNA
  9% tRNA

→ Many sequences, but low structural diversity!
How does this effect prediction accuracy on RNA not from these
families?

2Danaee et al., NAR 2018
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The bpRNAinv data set

How can we mimic training data with low structural diversity using
synthetic data?
• Take all structures from bpRNA
• Remove pseudo-knots, restrict to n ≤ 120, ≤ 6 pairs in PKs
• For each structure design a sequence using RNAinverse
• Resulting data set has same structure distribution as bpRNA
• Sequences are completely unrelated to each other

After training with these data set, test performance on two test
sets:

1 A test set produced in the same way by RNAinverse
unrelated sequences, but same structure bias

2 Di-nucleotide shuffling of training sequences
same sequence composition, but unrelated structures
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Performance with the bpRNAinv data set

Training set bpRNAinv-120

Test set bpRNAinv-120

Shuffled bpRNAinv-120

Validation bpRNAinv-120

• Performance on the inverse folded test set almost as good as
training set
• Poor performance when structures are dis-similar to training

structures
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Take home lessons

• Synthetic data allow to test the capabilities of DNNs with full
control over biases
• DNNs for RNA secondary structure prediction can easily learn

about local structure features, but struggle with non-local or
global features
• Current architectures generalize well to novel sequences as

long as structures are covered by the training set
• Poor generalization to RNA with novel structures
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