# Annotation of Nucleic Acid Structures at dnatco.datmos.org

### Bohdan Schneider

bohdan.schneider@gmail.com bs.structbio.org

### Jiří Černý,

Paulína Božíková, Lada Biedermannová, Michal Malý, Jakub Svoboda

### Institute of Biotechnology of the Czech Academy of Sciences

Computational Approaches to RNA Structure nd Function 2022-08-10





# Motivation

 Provide tools to make annotation, refinement, validation, and modeling of nucleic acids more reliable





# Nucleotide Conformers, NtC

### Both DNA & RNA analyzed:

- sequentially non-redundant set of crystal structures
- containing ~120 thousand dinucleotide steps
- Analysis in 12D torsion space
  - fragment is not suite
- Cluster analysis + empirical rules
- 96 NtC classes

Černý et al.: Nucleic Acids Research **48**: 6367 (2020).





## Two levels of analysis: NtC = Geometry assignment; CANA = symbolic annotation 96 NtC classes: geometry of ensembles



### NtCs OPxx grouped to CANA "letter" OPN



automated computer assignment

# NtC & CANA summary, more at dnatco.datmos.org

Annotation

the most frequent, canonical A form A-DNA with B like x A like, similar to AA00, high α A like, similar to AA00, low  $\alpha$ A form variant A form variant A like,  $\alpha/\gamma$  switch (150/180) A like,  $\alpha/\gamma$  switch (130/180) A like,  $\alpha/\gamma$  switch (130/180) A like,  $\alpha/\gamma$  switch (210/140) A like,  $\alpha/\gamma$  switch (90/190) A form with distant bases, low  $\zeta$ A like backbone, bases can be intercalated A form with distant bases, low  $\zeta$ 

|      |      | ۲ <u>ا</u> | lumbe | rs of Step | ); |
|------|------|------------|-------|------------|----|
| CANA | NtC  | DNA        |       | RNA        |    |
|      |      | #          | %     | #          |    |
| AAA  | AA00 | 1 805      | 3.1   | 21 177     |    |
| AAA  | AA02 | 595        | 1.0   | 80         |    |
| AAA  | AA03 | 32         | 0.1   | 806        |    |
| AAA  | AA04 | 148        | 0.3   | 1 830      |    |
| AAA  | AA08 | 150        | 0.3   | 8 527      |    |
| AAA  | AA09 | 22         | 0.0   | 230        |    |
| AAw  | AA01 | 284        | 0.5   | 1 859      |    |
| AAw  | AA05 | 7          | 0.0   | 385        |    |
| AAw  | AA06 | 18         | 0.0   | 513        |    |
| AAw  | AA10 | 15         | 0.0   | 488        |    |
| AAw  | AA11 | 6          | 0.0   | 240        |    |
| AAu  | AA07 | 1          | 0.0   | 95         |    |
| AAu  | AA12 | 7          | 0.0   | 616        |    |
| AAU  | AA13 | 0          | 0.0   | 105        |    |



### NtC & CANA summary, more at dnatco.datmos.org

The main features of CANA let

A-form A-like, switched a/y values A-like, unstacked bases conformers bridging A- to B-fe conformers bridging B- to A-fe canonical B-form less populated BI conformers, swite conformers bridging BI- to BII-BII form minor B-like, untypical torsion com parallel bases, can be intercala unstacked, often distant base parallel bases, one in syn orient Z-forms **All Assigned Steps** non-Assigned Steps All Steps

| tters            | CANA   | Number | DNA   | RNA   |
|------------------|--------|--------|-------|-------|
|                  | letter | of NtC | %     | %     |
|                  | AAA    | 6      | 4.7   | 57.0  |
| 5                | AAw    | 5      | 0.5   | 5.8   |
|                  | AAu    | 3      | 0.0   | 1.3   |
| orm              | A-B    | 5      | 4.9   | 2.1   |
| orm              | B-A    | 8      | 6.7   | 0.2   |
|                  | BBB    | 2      | 39.5  | 0.0   |
| ched a/ <b>y</b> | BBw    | 5      | 6.0   | 0.0   |
| form             | B12    | 2      | 6.3   | 0.0   |
|                  | BB2    | 2      | 4.8   | 0.0   |
| binations        | miB    | 6      | 3.6   | 0.0   |
| ated             | ICL    | 7      | 0.2   | 0.6   |
| es               | OPN    | 33     | 0.3   | 4.1   |
| tation           | SYN    | 6      | 0.7   | 0.3   |
|                  | ZZZ    | 6      | 0.6   | 0.6   |
|                  | AIA    | 96     | 79.0  | 72.2  |
|                  | NAN    | 1      | 21.1  | 27.8  |
|                  |        |        | 100.0 | 100.0 |

### NA structural alphabet CANA



# Analysis of NA structures by their "translation" into letters of the Structural Alphabet



#### chain A:

| mіВ   | B-A        | NAN | mil       |
|-------|------------|-----|-----------|
| AAA   | AAA        | AAA | AA        |
| BB2   | 2B1        | BBB | <b>B1</b> |
| A-B   | B-A        |     |           |
| chain | <b>B</b> : |     |           |
| 3B1   | 2B1        | 2B1 | 2B        |
| B-A   | AAA        | AAA | AA        |
| A-B   | 2B1        | 2B1 | BB        |
| B12   | miB        |     |           |

- B B12 BBB 2B1 NAN A AAA AAA AAA A-B 2 B-A 2B1 B12 B-A
- 1 BBB B-A A-B BBB A AAA AAA AAA AAA
- B NAN A-B B-A 2B1





# Results

# **CANA**/sequence associations in the nucleosome core particle and in complexes with transcription factors

#### Populated CANA codes in DNA structures

|     | DADA               | DADC               | DADG | DADT                | DCDA        | DCDC | DCDG               | DCDT        | DGDA | DGDC | DGDG | DGDT        | DTDA | DTDC               | DTDG | DTDT        |
|-----|--------------------|--------------------|------|---------------------|-------------|------|--------------------|-------------|------|------|------|-------------|------|--------------------|------|-------------|
| AAA | -4.1               | -0.6               | -2.3 | -2.8                | -3.9        | 9.6  | 1.5                | 0.8         | -5.8 | 4.5  | 4.1  | 0.7         | -1.0 | -0.5               | -4.5 | -4.1        |
| A-B | - <mark>8.7</mark> | - <mark>6.7</mark> | -3.7 | -3.1                | 5.4         | 0.6  | 7.3                | 9.9         | -6.4 | -5.5 | -3.0 | 2.0         | 3.2  | -1.0               | 2.3  | -2.4        |
| B-A | -4.8               | 13.5               | 0.6  | 7.0                 | <b>-9.0</b> | -0.1 | -6.7               | -4.8        | -2.4 | 12.2 | -2.9 | 1.2         | -6.3 | 0.4                | -7.9 | -4.4        |
| BBB | 8.6                | -3.5               | 3.6  | 4.7                 | -5.7        | -3.8 | -13.0              | 2.0         | 3.7  | -6.3 | -5.8 | 4.4         | -1.1 | 5.8                | 0.3  | 6.5         |
| BBw | 1.5                | 2.3                | 0.0  | 7.9                 | -0.4        | -0.9 | - <mark>6.4</mark> | 0.5         | -3.8 | -2.5 | -4.3 | 3.1         | -2.4 | 0.0                | -3.0 | 4.6         |
| B12 | 4.0                | <b>-7.3</b>        | 1.5  | - <mark>9.</mark> 1 | 6.0         | -3.0 | 5.3                | -3.3        | 6.6  | -1.6 | 2.9  | -6.4        | 3.3  | -3.4               | 4.1  | <b>-9.6</b> |
| BB2 | -1.3               | <b>-9.1</b>        | -2.8 | -11.7               | 10.2        | -6.0 | 6.7                | <b>-7.8</b> | 6.4  | 2.0  | 5.7  | <b>-9.2</b> | 8.2  | - <mark>8.2</mark> | 5.6  | -12.5       |
| NAN | -2.7               | 0.4                | -0.9 | -2.5                | 0.2         | 3.9  | 5.4                | -0.2        | -4.5 | -2.5 | -2.0 | -1.8        | 0.2  | -2.5               | 1.0  | 6.2         |

#### Populated CANA codes in RNA structures

|     | AA   | AC   | AG   | AU   | CA   | CC                  | CG                  | CU   | GA    | GC    | GG    | GU   | UA   | UC   | UG   | UU   |
|-----|------|------|------|------|------|---------------------|---------------------|------|-------|-------|-------|------|------|------|------|------|
| AAA | -4.3 | 0.5  | -4.1 | -4.2 | -2.8 | 9.5                 | 2.6                 | 4.3  | -11.0 | 7.9   | 5.9   | 1.5  | -8.5 | 0.2  | -4.5 | -3.9 |
| AAw | -2.6 | -2.2 | 4.7  | -3.1 | 0.7  | -1.7                | 8.7                 | -1.6 | -5.4  | -2.2  | 8.1   | -6.9 | -7.8 | -1.0 | 3.4  |      |
| A-B | -2.7 | -3.3 | -3.2 | 1.7  | 0.9  | -2.3                | 1.2                 | 5.2  | -3.8  | -3.9  | 0.5   | 1.3  | 0.4  | -2.0 | 5.1  | 1.5  |
| OPN | -1.3 | -1.8 | 3.2  | -0.7 | -3.4 | - <mark>-8.7</mark> | -6.7                | -5.5 | 11.2  | -2.1  | -10.7 | 5.2  | 6.7  | 3.7  | 0.5  | 0.4  |
| NAN | 10.7 | 3.0  | 6.4  | 9.9  | 5.0  | -18.5               | - <mark>8.</mark> 8 | -9.3 | 12.9  | -14.9 | -13.6 | -3.5 | 11.3 | -1.4 | 2.9  | 7.9  |





# **CANA**/sequence associations in the nucleosome core particle and in complexes with transcription factors

| ns    |     | AA  | AC  | AG  | AT  | CA  | CC  | CG  | СТ  | GA  | GC  | GG  | GT  | TA  | TC  | TG  | TT  |     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| otei  | AAA | 82  | 28  | 42  | 61  | 31  | 87  | 12  | 74  | 17  | 27  | 42  | 35  | 104 | 21  | 15  | 97  | AAA |
| , pro | A-B | 34  | 10  | 31  | 42  | 77  | 43  | 66  | 144 | 26  | 8   | 42  | 65  | 110 | 37  | 59  | 59  | A-B |
| tory  | B-A | 71  | 193 | 79  | 182 | 35  | 119 | 25  | 45  | 62  | 114 | 54  | 99  | 40  | 103 | 32  | 146 | B-A |
| ulat  | BBB | 676 | 259 | 443 | 461 | 399 | 308 | 231 | 344 | 378 | 325 | 359 | 419 | 514 | 373 | 508 | 615 | BBB |
| reg   | 2B1 | 116 | 104 | 81  | 199 | 49  | 79  | 30  | 90  | 50  | 66  | 42  | 103 | 91  | 121 | 56  | 228 | 2B1 |
| lto   | 3B1 | 108 | 86  | 61  | 166 | 33  | 61  | 23  | 56  | 41  | 87  | 48  | 100 | 41  | 69  | 40  | 163 | 3B1 |
| xec   | B12 | 122 | 41  | 75  | 34  | 127 | 49  | 105 | 37  | 103 | 63  | 99  | 35  | 106 | 30  | 134 | 23  | B12 |
| ple   | BB2 | 60  | 19  | 36  | 13  | 152 | 18  | 79  | 4   | 126 | 50  | 60  | 7   | 142 | 12  | 112 | 8   | BB2 |
| Com   | miB | 47  | 69  | 36  | 40  | 51  | 41  | 28  | 50  | 30  | 45  | 35  | 23  | 30  | 58  | 29  | 38  | miB |
| NA (  | NAN | 153 | 156 | 128 | 152 | 127 | 142 | 103 | 138 | 85  | 114 | 154 | 109 | 178 | 107 | 160 | 126 | NAN |
| 0     |     | AA  | AC  | AG  | AT  | CA  | CC  | CG  | СТ  | GA  | GC  | GG  | GT  | TA  | TC  | TG  | TT  |     |
| Si    | AAA | 0   | 2   | 0   | 1   | 0   | 1   | 0   | 0   | 0   | 2   | 0   | 0   | 0   | 0   | 0   | 1   | AAA |
| ticle | A-B | 1   | 1   | 0   | 11  | 7   | 4   | 9   | 6   | 2   | 0   | 2   | 2   | 8   | 1   | 9   | 7   | A-B |
| par   | B-A | 12  | 15  | 6   | 13  | 5   | 10  | 2   | 7   | 4   | 6   | 7   | 11  | 2   | 8   | 4   | 9   | B-A |
| ore   | BBB | 129 | 40  | 97  | 111 | 56  | 43  | 28  | 43  | 60  | 57  | 66  | 51  | 58  | 67  | 76  | 135 | BBB |
| le co | 2B1 | 11  | 9   | 4   | 24  | 2   | 0   | 4   | 4   | 3   | 5   | 2   | 12  | 9   | 9   | 5   | 30  | 2B1 |
| Som   | 3B1 | 7   | 4   | 4   | 30  | 6   | 4   | 1   | 4   | 7   | 3   | 6   | 13  | 8   | 8   | 4   | 18  | 3B1 |
| eos   | B12 | 42  | 10  | 31  | 11  | 38  | 13  | 10  | 8   | 61  | 13  | 20  | 14  | 13  | 9   | 29  | 11  | B12 |
| nucl  | BB2 | 29  | 2   | 21  | 5   | 66  | 26  | 8   | 32  | 38  | 29  | 27  | 6   | 20  | 5   | 50  | 6   | BB2 |
| in.   | miB | 30  | 19  | 19  | 37  | 21  | 10  | 13  | 15  | 27  | 11  | 13  | 10  | 14  | 14  | 28  | 26  | miB |
| NA    | NAN | 32  | 26  | 21  | 45  | 34  | 25  | 18  | 22  | 37  | 16  | 23  | 15  | 20  | 31  | 35  | 42  | NAN |
|       |     | AA  | AC  | AG  | AT  | CA  | CC  | CG  | СТ  | GA  | GC  | GG  | GT  | TA  | TC  | TG  | TT  |     |

### Transcription factors: specific recognition, DNA may be straight or bent Nucleosome core particle: "nonspecific" binding, bent DNA



transcription factor in 4roc DNA bound by

# Fourier transform of several DNA properties along the strand: Bll every 10th nucleotide bends DNA duplex





# BI-BII-BI models with periodicity of BII 8, 10, and 12



# Examples of tetraloop motifs: sequential search → structural motifs

analysis eeper



4lvz: relatively simple motif



4qvi: made of rare NtCs



# Annotation of riboswitch binding sites: each is unique, contain many unassigned dint



4npq: S-adenosyl homocysteine riboswitch



5ndh: Guanidine II riboswitch

# We assigned dinucleotide geometries across the database ...

Bad news

- remain unassigned
- We know that no major NtC class is missing on our list
- New refinement protocols possible & needed



• Of ~7 million dinucleotides assigned, about 30%

geometries of up to 50% of unassigned close to the *NtC* geometries

# Web services



#### BROWSE CONFORMERS ABOUT HOW TO CITE DOWNLOAD



#### Enter PDB ID (e.g. 1bna)

RCSB-PDB ~

SUBMIT







# dnatco.datmos.org: annotation tools from intuitive to expert

#### Černý, Božíková & Schneider: Acta Cryst D76: 806 (2020)



Annotation

Torsions Similar Settings Browse Download

Crystal structure of the VS ribozyme - wild-type C634

Results of the assignment of 185 detected steps in 1 model(s), can be also downloaded as csy or json file. Found 156/14/15 steps in 0-0.5/0.5-1.0/1.0+A Cartesian rmsd from reference. Average confal 57, percentile 72.

| Step name          | CANA | NtC   | confal | rms  |
|--------------------|------|-------|--------|------|
| 5v3i_A_G600_G601   | AAw  | AA01  | 30     | 0.44 |
| 5v3i_A_G601_C602   | AAA  | AA08  | 76     | 0.22 |
| 5v3i_A_C602_G603   | AAA  | AA00  | 71     | 0.14 |
| 5v3i_A_G603_C604   | NAN  | NANT  | 0      | 1.22 |
| 5v3i_A_C604_U605   | AAA  | AA08  | 89     | 0.14 |
| 5v3i_A_U605_G606   | NAN  | NANT  | 0      | 0.33 |
| 5v3i_A_G606_U607   | AAA  | AA08  | 78     | 0.17 |
| 5v3i_A_U607_G608   | AAA  | AA00  | 72     | 0.24 |
| 5v3i_A_G608_U609   | NAN  | NANT  | 0      | 0.35 |
| 5v3i_A_U609_C610   | ΔΑΑ  | AA08  | 84     | 0.22 |
| 5v3i A C610 G611   | ΑΑΑ  | AA08  | 67     | 0.45 |
| 5v3i_A_G611_C612   | A-B  | AB05  | 87     | 0.26 |
| 5v3i_A_C612_A613   | NAN  | NANT  | 0      | 0.85 |
| 5v3i_A_A613_A614   | NAN  | NANT  | 0      | 1.3  |
| 5v3i_A_A614_U615   | NAN  | NANT  | 0      | 1.1  |
| 5v3i_A_U615_C616   | OPN  | OP15  | 44     | 0.29 |
| 5v3i_A_C616_U617   | AAA  | AA00  | 81     | 0.24 |
| 5v3i_A_U617_G618   | AAu  | AA12  | 74     | 0.2  |
| 5v3i_A_G618_C619   | AAA  | AA00  | 66     | 0.23 |
| 5v3i_A_C619_G620   | AAA  | AA00  | 35     | 0.40 |
| 5v3i_A_G620_A621   | NAN  | NANT  | 0      | 1.9  |
| 5v3i_A_A621_A622   | NAN  | NANT  | 0      | 1.1  |
| 5v3i_A_A622_G623   | NAN  | NANT  | 0      | 0.90 |
| 5v3i_A_G623_G624   | AAA  | AA00  | 22     | 0.33 |
| 5v3i_A_G624_G625   | AAA  | AA00  | 67     | 0.30 |
| 5v3i_A_G625_C626   | AAA  | AA00  | 91     | 0.23 |
| 5v3i_A_C626_G627   | AAA  | AA08  | 32     | 0.44 |
| 5v3i_A_G627_U628   | AAA  | AA08  | 91     | 0.2  |
| 5v3i_A_U628_C629   | OPN  | OP04  | 55     | 0.31 |
| 5v3i_A_C629_G630   | AAA  | AA00  | 46     | 0.39 |
| 5v3i_A_G630_U631   | AAA  | AA00  | 82     | 0.10 |
| 5v3i A U631 C632   | AAA  | AA00  | 86     | 0.13 |
| 5v3i A C632 G633   | AAA  | AA00  | 68     | 0.30 |
| 5v3i A G633 C634   | AAA  | AA00  | 57     | 0.34 |
| 5v3i A C634 C635   | AAA  | AA00  | 70     | 0.34 |
| 5v3i A C635 C636   | AAA  | AA00  | 84     | 0.14 |
| 5v3i A C636 C637   | AAA  | AA00  | 79     | 0.2  |
| 5v3i A C637 A638   | AAA  | AA00  | 46     | 0.44 |
| 5v3i A A638 A639   | OPN  | OP07  | 76     | 0.34 |
| 5v3i A A639 G640   | AAA  | AA08  | 55     | 0.4  |
| 5v3i A G640 C641   | AAA  | AA08  | 86     | 0.20 |
| 5v3i A C641 G642   | AAw  | AA01  | 57     | 0.20 |
| 5v3i A G642 G643   | AAA  | AA08  | 68     | 0.25 |
| 6.0: A CIEAR LIEAA |      | 1 400 |        | 0.20 |

### PDB ID 5v3i



Prevailing A form



Highlight of "hot" regions

# Future development: open our tools for the community

- Reorganize *dnatco.datmos.org* 
  - annotation, validation, refinement, modeling tabs
- Help to improve refinement and modeling pipelines
  - Phenix
  - Refmac
  - Macromolecular Model Builder (MMB) by Sam Flores uses **NtC** to build from 2D or fit to electron density
- Collaborate on development of the NAKB







#### Institute of Biotechnology of the Czech Academy of Sciences

### Thank you for your time!





dnatco.datmos.org bohdan.schneider@gmail.com



Building the capacity: CZ.02.1.01/0.0/0.0/16\_013/0001777









