PRESENTATION

Forbidden motifs and the cardinality of secondary structure space

YAO, Hua-Ting

Ecole Polytechnique, France McGill University, Canada

TBI, University of Vienna, Austria

Benasque — Aug 11, 2022

Phenotype Space

Secondary structure S^*

Genotype Space

UAAUUUAAGAUGGCGGUGAA ... UUUAAGAUAAACUGGGCGAA ...

RNA sequence w

Phenotype Space

CACGCGCUAUUCAACCUCUGC ... UAGCGACGCUGAAUUCGACUCGAA ... co Cum $MFE(w) = S^*$ UAAUUUAAGAUGGCGGUGAA ... UUUAAGAUAAACUGGGCGAA ... 000 004 Secondary structure S^* RNA sequence w

AAAAAA ... GAACUAGCUAAAGCUUGGCGU ...

Genotype Space

Phenotype Space Genotype Space Image: Constraint of the state of th

Secondary structure S^*

RNA sequence w

444444

Forbidden Motifs of size up to 14

- Almost half of motifs are forbidden of size up to 14 (4 561 out of 10 886)
- 2 323 forbidden motifs are minimal
- 63 do not contain isolated base pair

Forbidden Motifs of size up to 14

- Almost half of motifs are forbidden of size up to 14 (4 561 out of 10 886)
- 2 323 forbidden motifs are minimal
- 63 do not contain isolated base pair

- Impact on the combinatorics of secondary structures
 - ightarrow (Asymptotic) Proportion P_n of structures avoiding forbidden motifs decreases exponentially with the size n

Grammar generates secondary structures

 $S \rightarrow \varepsilon \, + \, \bullet \, S \, +$ (S) S

Grammar generates secondary structures

$$S \to \varepsilon + \bullet S + (S) S$$

Grammar generates secondary structures $\mathcal D$ avoiding forbidden motif set $\mathcal F$

 $S \rightarrow \varepsilon \, + \, \bullet \, S \, +$ (S) S

Grammar generates secondary structures $\mathcal D$ avoiding forbidden motif set $\mathcal F$

		Proportion						
$ \mathcal{F} $	$ \mathcal{D}_n $	P_n	P_{100}	P_{500}	P_{1000}			
387	$0.67 \frac{2.242^n}{n\sqrt{n}}$	0.980^{n}	1.1910^{-1}	2.9810^{-5}	9.4010^{-10}			

Secondary structure S^*

RNA sequence w

Secondary structure S^*

RNA sequence w

Secondary structure S^*

RNA sequence w

			Proportion				
	$ \mathcal{F} $	$ \mathcal{D}_n $	P_n	P_{100}	P_{500}	P_{1000}	
not MFE	387	$0.67 \frac{2.242^n}{n\sqrt{n}}$	0.980^{n}	1.1910^{-1}	2.9810^{-5}	9.4010^{-10}	
$\mathbb{P} < 50\%$	401	$0.66 \frac{2.239^n}{n\sqrt{n}}$	0.978^{n}	1.0310^{-1}	1.5310^{-5}	2.4910^{-10}	
$\mathbb{E} > 1$	411	$0.65 \frac{2.236^n}{n\sqrt{n}}$	0.977^{n}	9.0810^{-2}	8.5210^{-6}	7.8610^{-11}	

• Lower bound of structural ensemble defect

$$\mathcal{D}(S) := \min_{w}(w, S) \ge \mathcal{D}(m_1) + \mathcal{D}(m_2) + \mathcal{D}(m_3) + \mathcal{D}(m_4) = 0.9$$

• Lower bound of structural ensemble defect

$$\mathcal{D}(S) := \min_{w}(w, S) \ge \mathcal{D}(m_1) + \mathcal{D}(m_2) + \mathcal{D}(m_3) + \mathcal{D}(m_4) = 0.9$$

• Variable tolerance grows with size n, e.g. 0.01n recommended in NUPACK (Zadeh et al., 2011)

 \rightarrow With $\varepsilon = 0.01n$, $P_{1000} \approx 10^{-33}$

Lower bound of MFEs of uniformly sampled SEQUENCES of size 500

MFE Structures

 \rightarrow With $\varepsilon = 0.01n$, $P_{1000} \approx 10^{-33}$

- Almost half of motifs are forbidden
- The cardinality of phenotype (structure) space is much smaller, but still exponentially grows
- Occurrences in PDBs shows a selection pressure on forbidden motifs

- Almost half of motifs are forbidden
- The cardinality of phenotype (structure) space is much smaller, but still exponentially grows
- Occurrences in PDBs shows a selection pressure on forbidden motifs
- Estimate how hard a phenotype can be realized
- Estimate the neuTral network size (number of designs)

AMIBio Ecole Polytechnique

Waldispühl group McGill University

TBI University of Vienna

Cedric Chauve Simon Fraser University

