RNA structure prediction using positive and negative evolutionary information

E Rivas, Harvard University rivaslab.org

Tetrahymena Telomerase

vertebrate telomerase RNA (TER)

Jiang et al., Cell, 2018

vTER P4.1

compensatory pair half-compensatory pair broken pair

Pattern of sequence changes in a conserved RNA structure

consensus	CCCCGGGG
Human	GCCUAGGU
Shark	GUCGCGGC
Mustelus	GUCGCGGC
Quoll	GUCUAGGC
Stingray	CUCGCGGG
Rhinoptera	CUCGCGGG
Xenopus	CGGGUCCG
Toad	-CUCGAG-
Frog	-CUGCAG-
Pyxicephalus	GCGGCCGC
Dermophis	GCCC GGGC
Herpele	GCCCGGGC
Caecilian	GCCCGGGC
Elephant	CC-CGAGG
Manatee	CC-CGAGG
Rabbit	CC-CGAGG
Guinea_pig	UC-CGAGU
Chinchilla	UC-CGAGU
Gopher	CC-CGCGG
Vole	GGCC GGCC
Hamster	GGCCGCCC
Mus_musculus	GGCC GGCC
Mus_spretus	GGCCGGCC
Rat	GGCCGGCC
Shrew_northern	CC-CGAGG
Cat	CCUCGAGG
Ferret	CC-CGAGG
Raccoon	CC-CGAGG
Bos	$\textbf{CC-C} \dots - \textbf{UGG}$
Pig	CC-CGAGG
Shrew_house	CCGCGG
Horse	CC-CGAGG
Armadillo	UC-CGAGG
Turtle	GGCC GGUC
Macaw	GGCCGUC
	<<<< >>>>>

Spurious pairwise covariations can appear from uncorrelated substitutions on a phylogenetic tree

A statistical test to simulate phylogenetic covariations

RNA structural covariation above phylogenetic expectation

eddylab.org/rscape

Lack of evidence for conserved secondary structure in long noncoding RNAs Rivas, Clements & Eddy, Nat Methods, 2017.

Statistical Power = expected covariation given the variation observed

power(s) = P (basepair with s substitutions has an E-value < 0.05)

How to tell when an RNA has an evolutionarily conserved structure ... or not?

Estimating the power of sequence covariation for detecting conserved RNA structure Rivas et al., Bioinformatics, 2020.

Cascade covariation/variation Constrained RNA Folding

- Produces an RNA structure that incorporates all positive basepairs
- Produces an RNA structure that forbides negative basepairs
- Uses a battery of probabilistic folding algorithms (computationally efficient)
- Visualization to critically analyze the structure
- In vivo structures

CaCoFold can incorporate pseudoknots, base triplets, other 3D interactions, even non RNA-structure related covariation

RNA structure prediction using positive and negative evolutionary information CaCoFold

a Input Alignment

- 5 sequences
- 50 consensus sequence length
- 76% average pairwise identity

CUGAAGUGACA-UCCUGCUGUUACUCUAUCAACGGUUCCGAUACCAGUA CAGAAGUGACUUUCCUAAAGUUACUGUAUUGAUUGGUUCCAAUACCUGUA CGGAGGUGAC-UCCUUUCCUUAUAUCGAAAGGUUCCGAUACCGUA CAG-UGGACCUUCCUUACGUUACUUAUCGAAGGUUCCGAUAACUGUA CCAGGUGAACUU-CCUUGAGUUACUUAUCAGGGGUUCCGAUAACCGGUA

c Cascade maxCov Algorithm

C0: 3/5 positive basepairs explained

C+: 2/5 positive basepairs explained

e Alternative Helix Filtering

F0: The nested structure: keep unchanged

F+: One alternative positive helix: add to structure

 b Covariation Analysis

f Complete Structure Display

Rivas, PLOS Comp Biol, 2020.

а		Model us	ed by the maxCov algorithm	b	b Model used by the folding algorithm (first layer)							
		N	ussinov Grammar		RNA Basic Grammar (RBG)							
S S	-> ->	• S • S • S	any non-covarying residue a covarying basepair	S	-> ->	o L	S S	а	free unpai	red residue		
S	->	SS		13	~	en	a					
S	->	end		т.	->	~	ਸ਼	~	a helix st	arts		
				L	->		P	0	a one-ba	sepair helix ends		
С		Model used by the folding algorithm (additional layers)				0	F	•	a helix adds one more basepair			
			G6X Grammar	E	r -> o P o a nelix ends							
s	->	т.			what can happen at the end of a helix							
s	->	LS		P	->			s	.0	a hairpin loop		
s	->	end		P	->	о.	(ьL		a left bulge loop		
				P	->			L	00	a right bulge loop		
L	->	o F o	a helix starts	P	->	٥.	(ьг	00	an internal loop		
L	->	0 0	a basepair of contiguous residues	P	->	M1	М			a multiloop starts		
L	->	0	an unpaired residue									
			a belix adds one more basenair	M	M -> MI M multiloop adds one more branch							
E F		0 1 0	a helix adds one more basepair	M	M -> K mathoop about to add right residue							
с F		T.S	a helix ends without a halipin	Пъ		Þ	~	a	a riaht-unp	aired residue in multiloc	a	
-		15	a heix ends, more stull to come		_>	M1	0		multiloon a	bout to add left residue		
o a non-covarving RNA residue											-	
0	•	a covary	ing RNA basepair	м	M1 -> o M1 a left-unpaired residue in multiloop							
0	• an RNA residue, not forming any basepairing					M1 -> L multiloop starts another helix						
0	oo a set of contiguous unpaired RNA residues											

an RNA basepair; bases could be at arbitrary distance in the RNA backbone

S, L, F, P, M, M1, R non-terminals that have to be transformed following one of the allowed rules

transfer-messenger RNA (tmRNA)

a Input Alignment

Rfam RF00023 seed alignment

- 477 sequences
- 354 consensus sequence length
- 357 average sequence length
- 42% average pairwise identity

c Cascade maxCov Algorithm

121 positive basepairs explained in 6 layers

- layer 1: 69 layer 2: 41 layer 3: 5 layer 4: 3
- layer 5: 2 layer 6: 1
- e Alternative Helix Filtering

5 pseudoknots

3 triplets

10 mRNA-induced covariations

f Complete structure display

nucleotide nucleotide present identity 97% 🔿 75% N 97% 90% 0 50% N 90% N 75% 8b PK3 2a 0-0 PK2 000 0a triplets 1-10-0 2-10-0 3-10-01 PK4 00 2d COOCOOCO mRNA-induced PK1 mRNA domain Δ Stop codon

b Covariation Analysis

All possible pairs analyzed equally

119 annotated basepairs in alignment (not used in analysis)

414 columns analyzed:

121 positive basepairs (significantly covary) 109 positive basepairs expected by power

31,027 negative basepairs

d Cascade Constrained Folding

- 139 annotated pairwise interactions
- 121/139 positive basepairs
- 74 pairs not in final ss due to forbidden negative basepairs

g Structure comparison

Kelley et al., RNA 2001, Fig 4

exoribonuclease resistant RNA

Steckelberg, Vicens, Kieft, mBio, 2018 Szucs, Nichols, Jones, Vicens, Kieft, mBio, 2020

Alternative/overlapping structures

CaCoFold helps improve Rfam structures

Cyclic di-AMP riboswitch

RNAalifold-R-scape

Cyclic di-AMP riboswitch

RNAalifold-R-scape

CaCoFold

CaCoFold find in vivo structures

structures with support from DMS reactivity G for in vivo formation

Support for structures from DMS

