## Features of functional human genes

Helena Cooper & Paul Gardner

August 12, 2022

## Main aim

What is sufficient evidence to call a transcript a non-coding RNA?

- Important for annotating genomes.
- What should appear in databases such as Rfam and RNAcentral?
- Expanded scope to include long ncRNAs and protein-coding exons.



# Rfam RNAcentral

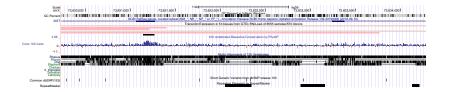
Cooper & Gardner (2020) Features of Functional Human Genes. bioRxiv.

- There are some polarizing opinions on what evidence is required to say something is a ncRNA, e.g.
  - "a few RNAseq reads in a single experiment is sufficient" (causal effect)
  - "must be expressed, KO impacts phenotype, and evolutionarily conserved..." (selected effect)
- Shouldn't a functional ncRNA be distinguishable from junk DNA?



# Vertebrate genomes & junk DNA

- ▶ Vary in length by an order of magnitude, e.g. bird genomes are  $\approx$  1Gb, while salamander genomes are  $\approx$  32Gb
  - Variation largely driven by decaying remnants of transposons
- $\blacktriangleright$   $\approx$  300Mb of sequence is conserved across the vertebrates
- Randomly generated sequences when inserted into genomes are also transcribed (and translated)
- Which suggests the number of functional elements should not scale with genome length



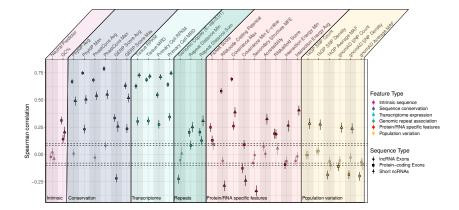

Ohno S (1972) So much'junk'DNA in our genome. In Evolution of Genetic Systems, Brookhaven Symp. Biol.

Compare the strength of association between "known" human genes & control regions for a range of genomic features.

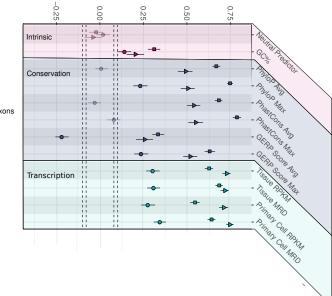
Positive controls: sampled 1,000 genes from each of the "ncRNA", and multiexonic "protein" and "IncRNA" HGNC classes

Negative controls: length-matched regions 20 Mb away to avoid linkage



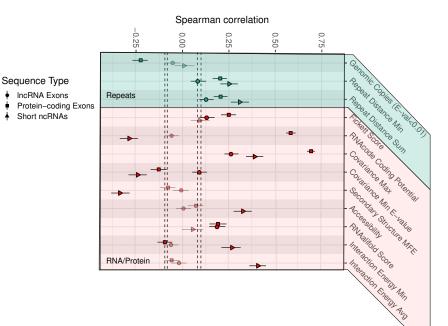

# Selected genome features...

Inclusion criteria:


- Expected to relate to gene function
- Must be a genome-wide statistic
- Readily accessible for the GRCh38
- Non-redundant
- Selected:
  - Intrinsic features (G+C, start)
  - Conservation (PhastCons, PhyloP, GERP)
  - Population variation (1000g, gnomAD)
  - Transcription (ENCODE RNAseq)
  - Genome repeat (copy num., distance to Tn)
  - Protein/RNA specific features (coding, structure, interactions)

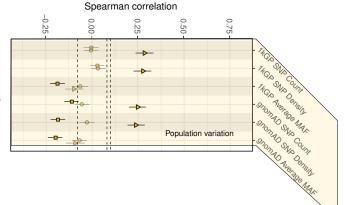
| Feature Name (Figure)         | Feature Name (CSV)     |
|-------------------------------|------------------------|
| Intrinsic sequence            |                        |
| Intrinsic sequence<br>GC%     |                        |
| Neutral Predictor             | GC_percentage<br>Start |
| Neutral Predictor             | Start                  |
| Sequence conservation         |                        |
| PhastCons Max                 | MaxPhastCons           |
| PhastCons Avg                 | MeanPhastCons          |
| PhyloP Max                    | MaxPhyloP              |
| PhyloP Avg                    | MeanPhyloP             |
| GERP Score Max                | mammals_max_gerp       |
| GERP Scrore Avg               | mammals_mean_gerp      |
| Transcriptome Expression      |                        |
| Tissue RPKM                   | RPKM tissue            |
| Tissue MRD                    | MRD tissue             |
| Primary Cell RPKM             | RPKM_primary_cell      |
| Primary Cell MRD              | MRD primary cell       |
|                               |                        |
| Genomic repeat association    |                        |
| Genomic Copies (E-val<0.01)   | Genome_copy_number     |
| Repeat Distance Min           | Dfam_min_distance      |
| Repeat Distance Sum           | Dfam_sum_distance      |
| Protein/RNA specific features |                        |
| Protein-coding signals:       |                        |
| Fickett Score                 | Fickett score          |
| RNAcode Coding Potential      | RNAcode_score          |
| RNA structure:                |                        |
| Covariance Max                | Max_covariance         |
| Covariance Min E-value        | Min covariance Eval    |
| Secondary Structure MFE       | MFE                    |
| Accessibility                 | Accessibility          |
| RNAalifold Score              | RNAalifold_score       |
| RNA:RNA interactions:         |                        |
| Interaction Energy Min        | InteractionMIN         |
| Interaction Energy Avg        | InteractionAVE         |
|                               |                        |
| Population variation          | 10000 010              |
| 1kGP SNP Count                | 1000G_SNPs             |
| 1kGP SNP Density              | 1000G_SNPsDensity      |
| 1kGP Average MAF              | aveMAF                 |
| gnomAD SNP Count              | gnomAD_SNP_count       |
| gnomAD SNP Density            | gnomAD_SNP_density     |
| gnomAD Average MAF            | gnomAD_avg_MAF         |

## Feature correlation with function...




#### Spearman correlation

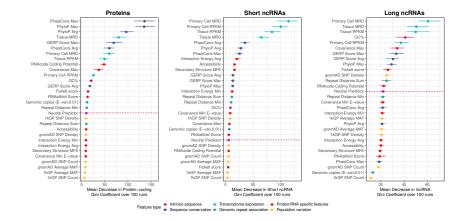



#### Sequence Type

- IncRNA Exons
- Protein–coding Exons
- Short ncRNAs



÷


\*



#### Sequence Type

- IncRNA Exons
- Protein-coding Exons
- Short ncRNAs

### Random forest result...



# Conclusions

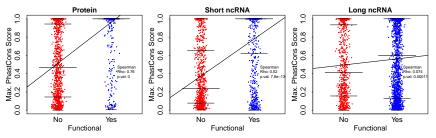
- Conservation and transcription is useful for identifying genes
- Covariation is surprisingly high in protein-coding alignments
- RNA structure and interactions important for short ncRNAs
- SNP data is not useful for determining function, MANY false positives in short ncRNAs
- It is difficult to distinguish many IncRNAs from neighbouring intergenic regions of the genome

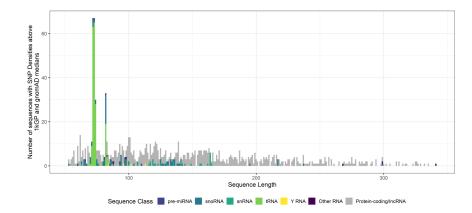


## Reviewers...

- R1: The authors ultimately conclude that evolutionary conservation and transcription should be "taken into consideration" when differentiating between functional sequences and noise: however, **this is a principle that biologists have long applied.**
- R2: The study adds value to the current debate on the functionality of IncRNAs and makes a number of other interesting observations such as the covariation patterns in coding sequences or the excess of SNPs in small RNAs.
- R3: ...we are far from knowing the full set of non-protein coding genes... The study is well designed and carefully executed. The manuscript is concise and clearly written...
- R4: I have major concerns about this manuscript. While the title and abstract suggest that the authors seek to explore, challenge, and ultimately more precisely define notions of "functionality", no meaningful analysis along these lines is performed...
- R5: The analysis is thorough and very nicely described. Such detailed description and comprehensive analysis ... is sure to be appreciated by many readers.

## Does the bar need raising on the IncRNAs?


Table 1. Summary of 24 lncRNA annotation resources reviewed in this study


| Source   | Data<br>type              | Tissue/cell                                            | Samples | lncRNA<br>genes |         | Method            | Read<br>type              | Exon<br>numbe |         | Expression           | Coding<br>potential                              | Epigenetic<br>signals          | Ref.            |
|----------|---------------------------|--------------------------------------------------------|---------|-----------------|---------|-------------------|---------------------------|---------------|---------|----------------------|--------------------------------------------------|--------------------------------|-----------------|
| CABILI   | RNA-seq                   | 24 tissues and cell types                              | 24      | 8195            | lincRNA | ab initio assembl | yPaired end<br>and single |               | >200 bp | ≥3 reads<br>per base | PhyloCSF<100,<br>without hit in Pfam             |                                | [2]             |
| KELLEY   | RNA-seq                   | 28 tissues and cell lines                              | 70      | 9164            | lincRNA | ab initio assembl |                           | $\geq 2$      | >200 bj |                      | PhyloCSF<100                                     |                                | [17]            |
| KRETZ    | RNA-seq                   | keratinocytes                                          | 3       | 654             | lincRNA | ab initio assembl | yPaired end               | ≥2            | >200 br | >5 RPKM              |                                                  |                                | [15]            |
| DING     | RNA-seq                   | Breast cancer tissues                                  | 25      | 344             | lincRNA | ab initio assembl | yPaired end               |               |         | >10 read             |                                                  |                                | [29]            |
| KHALIL   | ChIP-seq                  | 6 cell lines                                           | 12      | 2510            | lincRNA | ab initio assembl | ySingle                   |               | >5 Kb   |                      |                                                  | H3K4me3<br>and H3K36me3        | [25]            |
| WHITE    | RNA-seq                   | Lung cancer tissues                                    |         |                 |         | de novo assembl   |                           |               | >200 b  |                      | GeneID                                           |                                | [16]            |
| HE       | RNA-seq                   | Prefrontal cortex                                      | 38      |                 |         | de novo assembl   |                           | ≥2            | >200 bj |                      | PhyloCSF < 100, ORF < 100<br>without hit in Pfam |                                | [20]            |
| HANGAUE  | RRNA-seq                  | 23 tissues                                             |         |                 |         | de novo assembl   |                           | $\geq 2$      |         |                      | ORF < 100                                        |                                | [18]            |
| IYER     | RNA-seq                   | 18 organs                                              | 7256    | 52 238          | lncRNA  | ab initio assembl | yPaired end<br>and single | e             | >200 bj |                      | Pfam/CPAT                                        |                                | [9]             |
| TRIMARCH | IIRNA-seq<br>and ChIP-seq | T-ALL cell lines and primary<br>leukemia samples       | 14      | 1984            | lncRNA  | ab initio assembl | yPaired end               | ≥2            | >200 bj | ≥3 reads             | PhyloCSF < 100                                   | H3K4me3, H3K4me<br>and H3K27ac | ±1[ <b>14</b> ] |
| MORAN    | RNA-seq and<br>ChIP-seq   | Islets and beta-cells                                  | 15      | 1128            | lncRNA  | ab initio assembl | yPaired end               |               | >200 bj | >0.5 RPKM            | ORF < 130,<br>without hit in Pfam                | H3K4me3                        | [13]            |
| SIGOVA1  | RNA-seq<br>and ChIP-seq   | hESC                                                   | 3       | 3983            | lncRNA  | ab initio assembl | yPaired end               |               | >100 bj | >0.07 FPKM           | CPC < 0                                          | H3K4me3                        | [26]            |
| SIGOVA2  | RNA-seq and<br>ChIP-seq   | Human endoderm cell                                    | 3       | 3544            | lncRNA  | ab initio assembl | yPaired end               |               | >100 bp | >0.07 FPKN           | CPC < 0                                          | H3K4me3                        | [26]            |
| BELL     | RNA-seq                   | Coronary artery smooth<br>muscle cell                  | 3       | 31              | lncRNA  | ab initio assembl | ySingle                   | $\geq 2$      | >200 bj | >0.7 RPKM            | PhyloCSF < 100,<br>without hit in Pfam           |                                | [27]            |
| YANG     | RNA-seq                   | Failing LV samples                                     | 16      | 113             | lncRNA  | ab initio assembl | yPaired end               | ≥2            |         | >0.5 RPKM            |                                                  |                                | [21]            |
| NE       | RNA-seq                   | Monocytes                                              |         |                 |         | ab initio assembl |                           |               | >200 b  | <b>,</b>             |                                                  |                                | [23]            |
| PARALKAF | R RNA-seq                 | Erythroblasts                                          | 15      | 594             | lncRNA  | ab initio assembl | yPaired end               | ≥2            | >200 bp | ≥3 read              | BlastX, HMMER,<br>PhyloCSF, GetORF               |                                | [19]            |
| SOWALSK  | YRNA-seq                  | Castration-resistant prostate<br>cancer (CRPC) tissues | e8      | 2965            | lncRNA  | ab initio assembl | yPaired end               | ≥2            | >200 bj |                      |                                                  |                                | [24]            |
| YAN      | RNA-Seq                   | Preimplantation embryos<br>and hESCs                   | 124     | 2121            | lncRNA  | de novo assembl   | y Single                  | $\geq 2$      | >1 kb   | >1 read              | CPC < 0                                          |                                | [28]            |
| NECSULEA | 1RNA-Seq                  | 8 organs                                               | 185     | 14 677          | lncRNA  | de novo assembl   | y Single                  | ≥2            | >200 bp | >10 reads            |                                                  |                                | [22]            |
|          | 2RNA-Seq                  | 2 organs                                               |         |                 |         | de novo assembl   | y Single                  | $\geq 2$      | >200 bp | >10 reads            |                                                  |                                | [22]            |
|          | Manually collected        |                                                        |         |                 | lncRNA  |                   |                           |               |         |                      |                                                  |                                | [1]             |
|          | Intergrative databas      |                                                        |         |                 | lncRNA  |                   |                           |               |         |                      |                                                  |                                | [10]            |
| NONCODE  | Intergrative databas      | e                                                      |         | 54 818          | lncRNA  |                   |                           |               |         |                      |                                                  |                                | [11]            |

Xu et al. (2017) A comprehensive overview of IncRNA annotation resources. Briefings in bioinformatics.



- Spearman correlation coefficients
- Random forest feature importance



