Reference-based viral sequence validation and annotation using VADR

Eric Nawrocki August 12, 2022

National Center for Biotechnology Information National Institutes of Health

INSDC (GenBank/ENA/DDBJ) has a lot of sequence data

D92–D96 Nucleic Acids Research, 2021, Vol. 49, Database issue doi: 10.1093/nar/gkaa1023

Published online 16 November 2020

GenBank

Eric W. Sayers^{®*}, Mark Cavanaugh, Karen Clark, Kim D. Pruitt, Conrad L. Schoch[®], Stephen T. Sherry and Ilene Karsch-Mizrachi

Division	Description	Base pairs ^a
WGS	Whole genome shotgun data	8 841 649 410 652
TSA	Transcriptome shotgun data	381 148 464 834
PLN	Plants	269 438 877 546
BCT	Bacteria	98 827 135 660
VRT	Other vertebrates	63 565 835 430
EST	Expressed sequence tags	43 301 109 577
TLS	Targeted Loci Studies	27 825 059 498
HTG	High-throughput genomic	27 781 778 663
PAT	Patent sequences	26 452 787 091
GSS	Genome survey sequences	26 378 695 300
MAM	Other mammals	20 844 388 122
INV	Invertebrates	19 759 935 222
ROD	Rodents	12 090 011 771
PRI	Primates	8 767 435 622
SYN	Synthetic	7 932 542 985
ENV	Environmental samples	6 755 612 180
VRL	Viruses	5 824 026 918
PHG	Phages	782 571 323
HTC	High-throughput cDNA	733 210 026
STS	Sequence tagged sites	640 923 137
UNA	Unannotated	679 302
TOTAL	All GenBank sequences	9 890 500 490 859

 Table 1. GenBank divisions

^aRelease 239 (8/2020).

Sequence submissions are handled by expert NCBI indexers

but manual indexing does not scale

Many submitted sequences are marker genes or viruses

marker gene/	2021	total
virus	# seqs	# seqs
SARS-CoV-2	3,026,073	6,052,165
16S rRNA	258,194	10,294,372
23S rRNA	59,191	1,236,112
COX1	86,248	541,630
HIV-1	44,359	1,035,342
Influenza	36,037	833,540
ITS2	26,630	260,245
ITS1	16,002	427,675
ITS1+ITS2	13,326	513,077

NCBI GenBank Indexers use BLAST

- Foosh pipelines exist for 16S, 23S, ITS (BLAST-based) and Influenza (FLAN)
- False negatives are better than false positives because indexer or submitter can manually examine them

Viruses with highest number of sequences in $\ensuremath{\mathsf{INSDC}}^*$

species	#seqs	family
SARS-CoV-2	6,052,165	Coronaviridae
HIV-1	1,035,342	Retroviridae
Influenza A virus	833,505	Orthomyxoviridae
Hepacivirus C	259,870	Flaviviridae
Hepatitis B virus	124,490	Hepadnaviridae
Influenza B virus	118,799	Orthomyxoviridae
Rotavirus A	96,690	Reoviridae
Norovirus (Norwalk virus)	51,748	Caliciviridae
SIV	50,454	Retroviridae
West Nile virus	49,579	Flaviviridae
Dengue virus	39,830	Flaviviridae
Enterovirus A	39,527	Picornaviridae
PRRSV	38,538	Arteriviridae
Human orthopneumovirus	32,835	Pneumoviridae
Enterovirus B	28,494	Picornaviridae
Lyssavirus rabies	26,798	Rhabdoviridae

• Genome annotation of the Zika virus:

- Zika's genome encodes a single polyprotein that is cleaved into 14 mature peptides.
- Zika RefSeq annotation (NC_012532) includes CDS and mature peptide annotation.

figure from ViralZone, Hulo et al. NAR. 2011 Jan;39:D576-82

• Genome annotation of the Zika virus:

- Zika's genome encodes a single polyprotein that is cleaved into 14 mature peptides.
- Zika RefSeq annotation (NC_012532) includes CDS and mature peptide annotation.
- About 84% of Zika virus sequences have CDS annotation.
- Less than 25% of Zika virus sequences have mature peptide annotation.
- Less than 7% of Dengue virus sequences have mature peptide annotation.
- Less than 2% of Norovirus sequences have mature peptide annotation.

figure from ViralZone, Hulo et al. NAR. 2011 Jan;39:D576-82

• Genome annotation of the Zika virus:

 RNA structures in the 3' UTR halt host exonuclease leading to an accumulation of 300-500nt subgenomic flavivirus RNAs (sfRNAs) are related to pathogenicity.

These RNA structures are not annotated in the Zika genome RefSeq (NC_012532)

figure from ViralZone, Hulo et al. NAR. 2011 Jan;39:D576-82

- CDS are not always annotated
- Mature peptides are rarely annotated
- Rfam families are rarely to never annotated in viral genomes (more than 200 families)

Systematic and complete annotation would benefit viral researchers (facilitate comparative analyses)

Annotation and validation should be coupled

BMC Bioinformatics

SOFTWARE

Open Access

VADR: validation and annotation of virus sequence submissions to GenBank

Alejandro A. Schäffer^{1,2}, Eneida L. Hatcher², Linda Yankie², Lara Shonkwiler^{2,3}, J. Rodney Brister², Ilene Karsch-Mizrachi² and Eric P. Nawrocki^{2*} ¹

 Unexpected characteristics are reported as *alerts* (e.g. early stop codon), some of which are *fatal* and cause sequences to *fail*

Norovirus and Dengue virus chosen as first viruses for VADR testing

species	#seqs	family
SARS-CoV-2	6,045,832	Coronaviridae
HIV-1	1,033,995	Retroviridae
Influenza A virus	833,505	Orthomyxoviridae
Hepacivirus C	259,870	Flaviviridae
Hepatitis B virus	124,490	Hepadnaviridae
Influenza B virus	118,799	Orthomyxoviridae
Rotavirus A	96,690	Reoviridae
Norovirus (Norwalk virus)	51,748	Caliciviridae
SIV	50,454	Retroviridae
West Nile virus	49,579	Flaviviridae
Dengue virus	39,830	Flaviviridae
Enterovirus A	39,527	Picornaviridae
PRRSV	38,538	Arteriviridae
Human orthopneumovirus	32,835	Pneumoviridae
Enterovirus B	28,494	Picornaviridae
Lyssavirus rabies	26,798	Rhabdoviridae

VADR builds a reference model of a RefSeq and its features

VADR validates and annotates each input sequence using its best-matching model

- Each sequence S proceeds through 4 stages:
 - 1. Classification
 - 2. Coverage determination
 - 3. Alignment
 - 4. Protein validation

Different types of alerts are identified and reported at each stage

code	S/F	error message	description
Fatal alerts	detecte	ed in the classification stage	
noannotn*	S	NO_ANNOTATION	no significant similarity detected
revcompl*	S	REVCOMPLEM	sequence appears to be reverse complemented
incsbgrp	S	INCORRECT_SPECIFIED_SUBGROUP	score difference too large between best overall model and best specified
			subgroup model
incgroup	S	INCORRECT_SPECIFIED_GROUP	score difference too large between best overall model and best specified
			group model
Non-fatal a	lerts de	tected in the classification stage	
qstsbgrp	S	QUESTIONABLE_SPECIFIED_SUBGROUP	best overall model is not from specified subgroup
qstgroup	S	QUESTIONABLE_SPECIFIED_GROUP	best overall model is not from specified group
indfclas	S	INDEFINITE_CLASSIFICATION	low score difference between best overall model and second best model
			(not in best model's subgroup)
lowscore	S	LOW_SCORE	score to homology model below low threshold

Stage 2: Coverage determination

Search each sequence with best-matching model (HMMER3 full pipeline)

Stage 2: Coverage determination

Search each sequence with best-matching model (HMMER3 full pipeline)

dupregin	S	DUPLICATE_REGIONS	similarity to a model region occurs more than once
discontn	S	DISCONTINUOUS_SIMILARITY	not all hits are in the same order in the sequence and the homology
			model
indfstrn	S	INDEFINITE_STRAND	significant similarity detected on both strands
lowsim5s	S	LOW_SIMILARITY_START	significant similarity not detected at 5' end of the sequence
lowsim3s	S	LOW_SIMILARITY_END	significant similarity not detected at 3' end of the sequence
lowsimis	S	LOW_SIMILARITY	internal region without significant similarity
Non-fatal	alerts o	letected in the coverage stage	
biasdseq	S	BIASED_SEQUENCE	high fraction of score attributed to biased sequence composition

Stage 3: Alignment and feature mapping

Align each sequence to its best-matching model (Infernal's cmalign)

Stage 3: Alignment and feature mapping

Align each sequence to its best-matching model (Infernal's cmalign)

code	S/F	error message	description
Fatal alerts	detect	ed in the annotation stage	
unexdivg*	S	UNEXPECTED_DIVERGENCE	sequence is too divergent to confidently assign nucleotide-based annotation
noftrann*	S	NO_FEATURES_ANNOTATED	sequence similarity to homology model does not overlap with any features
mutstart	F	MUTATION_AT_START	expected start codon could not be identified
mutendcd	F	MUTATION_AT_END	expected stop codon could not be identified, predicted CDS stop by
			homology is invalid
mutendns	F	MUTATION_AT_END	expected stop codon could not be identified, no in-frame stop codon
			exists 3' of predicted valid start codon
mutendex	F	MUTATION_AT_END	expected stop codon could not be identified, first in-frame stop codon
			exists 3' of predicted stop position
unexleng	F	UNEXPECTED_LENGTH	length of complete coding (CDS or mat_peptide) feature is not a multiple
			of 3
cdsstopn	F	CDS_HAS_STOP_CODON	in-frame stop codon exists 5' of stop position predicted by homology
			to reference
peptrans	F	PEPTIDE_TRANSLATION_PROBLEM	mat_peptide may not be translated because its parent CDS has a problem
pepadjcy	F	PEPTIDE_ADJACENCY_PROBLEM	predictions of two mat_peptides expected to be adjacent are not adjacent
indfantn	F		nucleotide-based search identifies CDS not identified in protein-based
	_		search
indf5gap	F	INDEFINITE_ANNOTATION_START	alignment to homology model is a gap at 5' boundary
indf5loc	F	INDEFINITE_ANNOTATION_START	alignment to homology model has low confidence at 5' boundary
indf3gap	F	INDEFINITE_ANNOTATION_END	alignment to homology model is a gap at 3' boundary
indf3loc	F	INDEFINITE_ANNOTATION_END	alignment to homology model has low confidence at 3' boundary
lowsim5f	F	LOW_FEATURE_SIMILARITY_START	region within annotated feature at 5' end of sequence lacks significant
			similarity
lowsim3f	F	LOW_FEATURE_SIMILARITY_END	region within annotated feature at 3' end of sequence lacks significant
			similarity
lowsimif	F	LOW_FEATURE_SIMILARITY	region within annotated feature lacks significant similarity

Stage 4: Protein validation

Stage 4: Protein validation

Compare each predicted CDS to model (RefSeq) proteins with BLASTX

code	S/F	error message	description
Fatal alert	s detec	ted in the protein validation stage	
cdsstopp	F	CDS_HAS_STOP_CODON	stop codon in protein-based alignment
indfantp	F	INDEFINITE_ANNOTATION	protein-based search identifies CDS not identified in nucleotide-based
			search
indf5plg	F	INDEFINITE_ANNOTATION_START	protein-based alignment extends past nucleotide-based alignment at
			5' end
indf5pst	F	INDEFINITE_ANNOTATION_START	protein-based alignment does not extend close enough to nucleotide
			-based alignment 5' endpoint
indf3plg	F	INDEFINITE_ANNOTATION_END	protein-based alignment extends past nucleotide-based alignment at
			3' end
indf3pst	F	INDEFINITE_ANNOTATION_END	protein-based alignment does not extend close enough to nucleotide
			-based alignment 3' endpoint
indfstrp	F	INDEFINITE_STRAND	strand mismatch between protein-based and nucleotide-based predictions
insertnp	F	INSERTION_OF_NT	too large of an insertion in protein-based alignment
deletinp	F	DELETION_OF_NT	too large of a deletion in protein-based alignment

VADR results on all Norovirus and Dengue sequences

		min	max			fraction
dataset	# seqs	length	length	# pass	# fail	pass
Norovirus complete (NC)	1,384	7380	7839	1,157	227	0.836
Dengue complete (DC)	4,580	10372	16254	4,171	409	0.911
	20 1 00	F.0	7070	00 400	0 700	0.010
Norovirus partial (NP)	32,190	50	1316	29,488	2,702	0.916
Dengue partial (DP)	20,973	50	10370	17,276	3,697	0.824

VADR results on all Norovirus and Dengue sequences

		min	max			fraction
dataset	# seqs	length	length	# pass	# fail	pass
Norovirus complete (NC)	1,384	7380	7839	1,157	227	0.836
Dengue complete (DC)	4,580	10372	16254	4,171	409	0.911
Norovirus partial (NP) Dengue partial (DP)	32,190 20,973	50 50	7376 10370	29,488 17,276	2,702 3,697	0.916 0.824

VADR is portable so submitters can run on their data prior to submission to save time

Sequences processed with VADR will include annotations of CDS, mature peptides, and RNAs (stem_loop and ncRNA) from models

SARS-CoV-2 sequence submissions in early 2020

		#new	#cumulative
month	year	seqs	seqs
Jan	2020	32	32
Feb	2020	58	90
Mar	2020	332	422
Apr	2020	1541	1963
May	2020	2974	4937
Jun	2020	3394	8331
Jul	2020	3604	11,935
Aug	2020	3818	15,753
Sep	2020	6731	22,484
Oct	2020	11,939	34,423
Nov	2020	4274	38,697
Dec	2020	4530	43,227

SARS-CoV-2 sequence submissions have increased since early 2020

		#new	#cumulative
month	year	seqs	seqs
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	2020 2020 2020 2020 2020 2020 2020 202	32 58 332 1541 2974 3394 3604 3818 6731 11,939 4274 4530	32 90 422 1963 4937 8331 11,935 15,753 22,484 34,423 38,697 43,227
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	2021 2021 2021 2021 2021 2021 2021 2021	8775 26,078 42,607 97,095 104,729 46,187 43,336 141,958 267,562 239,296 267,270 288,771	52,002 78,080 120,687 217,782 322,511 368,698 412,034 553,992 821,554 1,060,850 1,328,120 1,616,891
Jan Feb Mar Apr May Jun Jul	2022 2022 2022 2022 2022 2022 2022 202	258,522 230,185 141,333 148,545 164,276 129,236 101,737	1,875,413 2,105,598 2,246,931 2,395,476 2,559,752 2,688,988 2,790,725

SARS-CoV-2 sequences differ from Norovirus and Dengue virus in several ways that impact VADR processing

	Norovirus	Dengue virus	SARS-CoV-2
length	7.6Kb	10.7Kb	29.9Kb
# seqs	44,936	113,211	1,616,891
% seqs full length	5.1%	8.4%	99.7%
% Ns	0.5%	0.2%	1.4%
% seqs with stretch of $>=$ 50 Ns	1.0%	0.4%	38.7%
average % identity	81.6%	94.4%	99.4%

VADR v1.0 performance

seconds per sequence	42.4	92.6	331.8
required RAM	8Gb	8Gb	64Gb
total running time, CPU days	1.1	10.2	6187.6

SARS-CoV-2 sequences differ from Norovirus and Dengue virus in several ways that impact VADR processing

	Norovirus	Dengue virus	SARS-CoV-2
length	7.6Kb	10.7Kb	29.9Kb
# seqs	44,936	113,211	1,616,891
% seqs full length	5.1%	8.4%	99.7%
% Ns	0.5%	0.2%	1.4%
% seqs with stretch of $>=$ 50 Ns	1.0%	0.4%	38.7%
average % identity	81.6%	94.4%	99.4%

VADR v1.0 performance

seconds per sequence	42.4	92.6	331.8
required RAM	8Gb	8Gb	64Gb
total running time, CPU days	1.1	10.2	6187.6

Replacing Ns with expected nucleotides allows many 'good' sequences to pass

Seeded alignment using blastn makes alignment stage faster

Using glsearch instead of cmalign reduces memory requirement

• lower memory requirement (2Gb max) allows for multi-threading

independently

VADR is now 1000-fold faster in practice for SARS-CoV-2 processing

	seeded	N				secs	hours	speedup
VADR	align-	replace-		#	required	per	per 100K	VS
version	ment?	ment?	glsearch?	cpus	RAM	seq	seqs	v1.0
v1.0	—	—	_	1	64 Gb	329.91	9164.3	-

VADR is now 1000-fold faster in practice for SARS-CoV-2 processing

	seeded	N				secs	hours	speedup
VADR	align-	replace-		#	required	per	per 100K	VS
version	ment?	ment?	glsearch?	cpus	RAM	seq	seqs	v1.0
v1.0	_	_	_	1	64 Gb	329.91	9164.3	-
v1.4.1	+	+	+	1	2 Gb	2.51	69.8	131.4

VADR is now 1000-fold faster in practice for SARS-CoV-2 processing

	seeded	N				secs	hours	speedup
VADR	align-	replace-		#	required	per	per 100K	VS
version	ment?	ment?	glsearch?	cpus	RAM	seq	seqs	v1.0
1.0				-		000.01	0164.0	
V1.0	—	—	—	T	64 GD	329.91	9164.3	-
v1.4.1	+	+	+	1	2 Gb	2.51	69.8	131.4
	I	1	I	-		2101	0010	10111
v1.4.1	+	+	+	8	16 Gb	0.33	9.3	986.8
V1 1 1		1	1	20	GA Ch	0 1 2	2 7	2462.2
VI.4.1	+	+	+	32	04 GD	0.13	3.7	2402.2

VADR is now fast enough to handle hundreds of thousands of sequences per month

		#new	#cumulative
month	year	seqs	seqs
Jan	2020	32	32
Feb	2020	58	90
Mar	2020	332	422
Apr	2020	1541	1963
iviay	2020	2974	4937
Jun	2020	3394	0331 11 025
	2020	3004	11,955
Aug Sen	2020	6731	22 484
Oct	2020	11 939	34 423
Nov	2020	4274	38.697
Dec	2020	4530	43.227
Jan	2021	8775	52,002
Feb	2021	26,078	78,080
Mar	2021	42,607	120,687
Apr	2021	97,095	217,782
IVIAY	2021	104,729	322,511
Juli	2021	40,107	300,090 412 034
	2021	141 058	553 002
Sen	2021	267 562	821 554
Oct	2021	239 296	1 060 850
Nov	2021	267.270	1.328.120
Dec	2021	288,771	1,616,891
		·	
Jan	2022	258,522	1,875,413
Feb	2022	230,185	2,105,598
Mar	2022	141,333	2,246,931
Apr	2022	148,545	2,395,476
ividy	2022	104,270	2,339,132
Juli	2022	129,230 101 727	∠,000,900 0,700,70⊑
Jui	2022	101,131	2,190,123

Besides getting faster, VADR has changed in other ways (work with Linda Yankie and Vince Calhoun and GenBank team)

- 14 releases since March 2020 (thanks to "git flow"*)
- 3 additional SARS-CoV-2 models (all eventually dropped):
 - B.1.1.7 (alpha)
 - B.1.525
 - 28254-deletion
- allow some alerts for non-essential ORFs and s2m RNA element without failing sequence (they become a misc_feature instead)

*https://nvie.com/posts/a-successful-git-branching-model/

VADR is a general tool

• Also used for COX1 (cytochrome C oxidase subunit I) sequences using 43 class or order specific *profile*-based models covering 5 genetic codes

Limitations

- nucleotide space, not protein space
- RefSeq or alignment must be 'representative' and conserved along full length
 - divergent sequences, regions, repeats, introns, gene order are problematic
- slow (SARS-CoV-2 speedups are not general)
- SARS-CoV-2 sequences that fail are kept out of the database

Future directions

- extend to more viruses
- alignment-based models for viruses

BMC Bioinformatics

SOFTWARE

Open Access

Ribovore: ribosomal RNA sequence analysis for GenBank submissions and database curation

Alejandro A. Schäffer^{1,2}, Richard McVeigh², Barbara Robbertse², Conrad L. Schoch², Anjanette Johnston², Beverly A. Underwood², Ilene Karsch-Mizrachi² and Eric P. Nawrocki^{2*}

Ribovore will (hopefully) help drive addition and improvement of Rfam rRNA models

Table 3 Profile models used by Ribovore

Model name	Gene	Taxonomy group	#Seqs	Length	Rfam
SSU_rRNA_archaea	SSU rRNA	Archaea	86	1477	RF01959
SSU_rRNA_bacteria	SSU rRNA	Bacteria	99	1533	RF00177
SSU_rRNA_eukarya	SSU rRNA	Eukarya	91	1851	RF01960
SSU_rRNA_microsporidia	SSU rRNA	Euk-Microsporidia	46	1312	RF02542
LSU_rRNA_archaea	LSU rRNA	Archaea	91	2990	RF02540
LSU_rRNA_bacteria	LSU rRNA	Bacteria	102	2925	RF02541
LSU_rRNA_eukarya	LSU rRNA	Eukarya	88	3401	RF02543
SSU_rRNA_mitochondria_metazoa	SSU rRNA	Mito-Metazoa	83	954	_
SSU_rRNA_mitochondria_amoeba	SSU rRNA	Mito-Amoeba	2	1861	_
SSU_rRNA_mitochondria_chlorophyta	SSU rRNA	Mito-Chlorophyta	2	1200	_
SSU_rRNA_mitochondria_fungi	SSU rRNA	Mito-Fungi	4	1603	_
SSU_rRNA_mitochondria_kinetoplast	SSU rRNA	Mito-Kinetoplast	3	624	_
SSU_rRNA_mitochondria_plant	SSU rRNA	Mito-Plant	4	1951	_
SSU_rRNA_mitochondria_protist	SSU rRNA	Mito-Protist	2	1677	_
SSU_rRNA_chloroplast	SSU rRNA	Chloroplast	94	1488	_
SSU_rRNA_chloroplast_pilostyles	SSU rRNA	Chloroplast	1	1531	_
SSU_rRNA_cyanobacteria	SSU rRNA	Bac-Cyanobacteria	49	1487	_
SSU_rRNA_apicoplast	SSU rRNA	Euk-Apicoplast	3	1463	_

'#seqs' is the number of sequences in the multiple alignment used to build the model. 'length' is the number of reference model positions. Abbreviations in 'taxonomy group' column: 'Bac' is Bacteria, 'Euk' is Eukarya and 'Mito' is Mitochondria

Acknowledgements

NCBI - viral annotation Alejandro Schäffer (now NCI)	NCBI - leadership David Landsman Kim Pruitt	Software developers Sean Eddy (HMMER/Infernal/Easel) Travis Wheeler (HMMER)
Linda Yankie	Steve Sherry	Tom Madden and BLAST team
Vincent Calhoun	Jim Ostell	William Pearson (FASTA/glsearch)
Sergiy Gotvyanskyy	David Lipman	Michael Farrar (HMMER/glsearch)
Susan Schafer		
Ilene Mizrachi	NLM - leadership	
Colleen Bollin	Patti Brennan	This research was supported by
Beverly Underwood	Jerry Sheehan	the Intramural Research Program
Prakash Keranahalli	Valerie Florance	of the NIH, National Library
Vasuki Gobu		of Medicine.
Alex Kotliarov		
Podnov Bristor		
Foully Brister Epoids Hatchor		
Lara Shonkwiler		
Sophia Hu		
Wratko Hlavina		
Ron Patterson		
		1
		National

