Genomic landscape of conserved RNA secondary structure signatures and their homologs

Vanda Gaonac'h-Lovejoy
Martin Smith Lab,
Benasque
Université de Montréal
August 2022

Increasing number IncRNAs with every new GENCODE version

>90\% of disease-associated mutation occur in non-coding genome

GWAS loci express IncRNAs

Xist is modular and conserved in evolution

binding site

Revisiting a previous study

Widespread purifying selection on RNA structure in mammals

Martin A. Smith ${ }^{1,2, \star}$, Tanja Gesell ${ }^{3}$, Peter F. Stadler ${ }^{4,5,6,7}$ and John S. Mattick ${ }^{1,2,8, *}$
${ }^{1}$ RNA Biology and Plasticity Laboratory, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 Australia, ${ }^{2}$ Genomics and Computational Biology Division, Institute for Molecular Bioscience, 306 Carmody Rd, University of Queensland, Brisbane, 4067 Australia, ${ }^{3}$ Department of Structural and Computational Biology; and Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories (MFPL), University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria, ${ }^{4}$ Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany, ${ }^{5}$ Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany, ${ }^{6}$ Center for Non-coding RNA in Technology and Health, Department of Basic Veterinary and Animal Sciences, Faculty of Life Sciences University of Copenhagen, Gronnegårdsvej 3, 1870 Frederiksberg C Denmark, 'Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA and ${ }^{8}$ St Vincent's Clinical School, University of New South Wales, Level 5, de Lacy, Victoria St, St Vincent's Hospital, Sydney, NSW 2010 Australia

Research problem

- Increasing number of IncRNAs but no systematic approach for functional annotation
- Hypothesis: Comparative sequence analysis to identify, classify and map functional RNA structures
- Objective: Provide a rational framework for deciphering the structure functions of IncRNAs

Previous study used fixed window length

Added noise if window is too large

RNALalifold: Dynamic window approach

SISSIz: Detection of functional RNA structures

Energy score
Gesell et al. Bioinformatics 2006 Gesell et al. BMC Bioinformatics 2008

This project

Deeper alignments:

- 46 mammals instead of 35
- Greater variability
- Likely to increase the specificity at the expense of loosing some

Dynamic window:

- RNALalifold instead of RNAalifold
- Locally more stable regions of interest
- Likely to increase sensitivity sensitivity
- Harder to get a consensus
structure

Analytic pipeline

Detection of evolutionarily conserved RNA secondary structures (ECS)

Total genomic coverage in ECS2.0 screen
300000000

- 89% of the human genome sampled
- > 2 million evolutionarily conserved structures
- 6% genome is conserved at the secondary structure level
- Process completed in over 48,700 CPU hours (≈ 6 years)

Revisited approach generated fewer predictions

- 60\% of the hits had been identified in our 2013 study
- Revisited approach generated fewer predictions but likely to be more accurate

ECS are enriched in various functional motifs

GENCODE 300000000

Features

ECS are enriched in various transposable elements

Repeat Masker UCSC

Repeat Family

\square RNA repeats	\square DNArepetitive elements
\square LTR	\square SINEs
\square Simple repeats \square LINEs	

Non-coding ECSs are enriched in disease-associated SNPs A
 B

Identified 23 pathogenic-associated SNPs that have riboSNitch potential

Do these structures occur elsewhere in the genome?

Identified 809,432 homologs from a subset of 23,818 ECS

Homology map from a non-repeat ECS model

Take home message

- ECSs are enriched in single nucleotide variants associated with various diseases and overlap over a thousand different splice sites associated with pathogenic diseases
- Some ECS have hundreds of homologs containing repetitive elements
- We can generate a network map of conserved structures and their homologs throughout the human genome

Acknowledgements

