

Genomic landscape of conserved RNA secondary structure signatures and their homologs

Vanda Gaonac'h-Lovejoy

Martin Smith Lab, Benasque Université de Montréal August 2022

Increasing number IncRNAs with every new GENCODE

>90% of disease-associated mutation occur in non-coding genome

GWAS loci express IncRNAs

Xist is modular and conserved in evolution

Revisiting a previous study

8220–8236 Nucleic Acids Research, 2013, Vol. 41, No. 17 doi:10.1093/nar/gkt596

Published online 11 July 2013

Widespread purifying selection on RNA structure in mammals

Martin A. Smith^{1,2,*}, Tanja Gesell³, Peter F. Stadler^{4,5,6,7} and John S. Mattick^{1,2,8,*}

¹RNA Biology and Plasticity Laboratory, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 Australia, ²Genomics and Computational Biology Division, Institute for Molecular Bioscience, 306 Carmody Rd, University of Queensland, Brisbane, 4067 Australia, ³Department of Structural and Computational Biology; and Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories (MFPL), University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria, ⁴Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16–18, D-04107 Leipzig, Germany, ⁵Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany, ⁶Center for Non-coding RNA in Technology and Health, Department of Basic Veterinary and Animal Sciences, Faculty of Life Sciences University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C Denmark, ⁷Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA and ⁸St Vincent's Clinical School, University of New South Wales, Level 5, de Lacy, Victoria St, St Vincent's Hospital, Sydney, NSW 2010 Australia

Received January 30, 2013: Revised May 29, 2013: Accented June 16, 2013

Research problem

- Increasing number of IncRNAs but no systematic approach for functional annotation
- Hypothesis: Comparative sequence analysis to identify, classify and map functional RNA structures
- Objective: Provide a rational framework for deciphering the structure functions of IncRNAs

Previous study used fixed window length

Added noise if window is too large

RNALalifold: Dynamic window approach

SISSIz: Detection of functional RNA structures

Energy score Gesell et al.Bioinformatics 2006 Gesell et al. BMC Bioinformatics 2008

	A	9	-	G								A	9	А	-	-	- 1	UK	g,	ΑQ	-		I A		Α	C		1.5	א נ				A	- 1	∎Li					A. C	
			С	G								Α	G	G	-	-	-	T '	Г	C 1	i.		Т		G	c -	ГΟ	6	6 A			G	A	сτ	6	i C	Т			AC	
																																								AC	
			С	G								Α	G	G	С	A	c	C .	Г	c d	G T	G	A	G	G	c,	A C	6 C	G A			С		- 1	٩	i C	С	С	G	AC	2
			С	G								Α	G	Α	-		-					G	С		G	A	GC	: A	۱A				G				С			AC	č –
																																								C C	
																																								AC	
																																				i C	Т			AC	ē .
	G	G	C.	G	A.	G	C	G	C	Т	G	A	G	G	-	-					-	G	A	G	G	T '	ΓG	i (iΑ	А	T.	Т	T.		G	i G	T.	Т	G	A (8
6			(1	(((١	١))		(1	1	1	1	(١	١)))
U			`	•	•	`	1	•		•	•	•	•	•			•	•	1	1	1	1	•	`		• •		•	<u> </u>		•	•	•	•	•	•	1	1	1	1	1
												((•												١)													•	
			•		•	•	•	•		•	•	1		•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•

ΤΟΛΟΤΟΛΟΛΟΟ ΟΛΟΟΛΟΤΛΟΤΤΟΛ

CCCCACACA

-55.76	$(((((\dots,\dots,)))),((((((\dots,\dots))))))))$
-0.86	(())
-8.56	(((()))))))
-1.38))
-12.76	((((())))))
-1.6).).)
-8.63)))

This project

Deeper alignments:

- 46 mammals instead of 35
- Greater variability
- Likely to increase the specificity at the expense of loosing some sensitivity
- Harder to get a consensus structure

Dynamic window:

- RNALalifold instead of RNAalifold
- Locally more stable regions of interest
- Likely to increase sensitivity

Analytic pipeline

Detection of evolutionarily conserved RNA secondary structures (ECS)

• 89% of the human genome sampled

- > 2 million evolutionarily conserved structures
- 6% genome is conserved at the secondary structure level
- Process completed in over 48,700 CPU hours
 (≈ 6 years)

Revisited approach generated fewer predictions

- 60% of the hits had been identified in our 2013 study
- Revisited approach generated fewer predictions but likely to be more accurate

ECS are enriched in various functional motifs

ECS are enriched in various transposable elements

Non-coding ECSs are enriched in disease-associated SNPs $_{B}$

Identified 23 pathogenic-associated SNPs that have riboSNitch potential

Do these structures occur elsewhere in the genome ?

Evolutionarily conserved sequence (ECS) coordinates.bed

Identified 809,432 homologs from a subset of 23,818 ECS

21

Homology map from a non-repeat ECS model

Take home message

- ECSs are enriched in single nucleotide variants associated with various diseases and overlap over a thousand different splice sites associated with pathogenic diseases
- Some ECS have hundreds of homologs containing repetitive elements
- We can generate a network map of conserved structures and their homologs throughout the human genome

Acknowledgements

Dr Martin Smith

Shawn Simpson

Fonds de recherche Santé Québec 🍻 🍲

Dr Bastien Paré

Yanis Bencheikh

Mélanie Sagniez

Yuxin Zhou

Nicolas Roy

Kristina Atanasova

Jonathan Therrien

