A SYSTEMICS VIEW OF PURAS CELLULAR RNA-BINDING FUNCTION FROM OMICS DATA GIVES INSIGHTS INTO PURA RELATED DISEASES

LENA MOLITOR², MELINA KLOSTERMANN¹, SABRINA BACHER², NADINE SPRANGER², JULIANE MERL-PHARM³, EJONA RUSHA⁴, DANIEL TEWS⁵, ANNA PERTEK⁴, MARCEL PROSKE^{2,6}, ANKE BUSCH⁷, REGINA FEEDERLE⁸, STEFANIE HAUCK³, MICHA DRUKKER^{4,9}, PAMELA FISCHER-POSOVSZKY⁵, JULIAN KÖNIG⁷, DIERK NIESSING^{2,6}, KATHI ZARNACK¹

1 BUCHMANN INS TUTE FOR MOLECULAR LIFE SCIENCES (BMLS) AND FACULTY BIOLOGICAL SCIENCES, GOETHE UNIVERSITY FRANKFURT, FRANKFURT; 2 GERMANY INS TUTE OF STRUCTURAL BIOLOGY, HELMHOLTZ ZENTRUM MÜNCHEN - GERMAN RESEARCH CENTER FOR ENVIRONMENTAL HEALTH, NEUHERBERG, GERMANY; 3 RESEARCH UNIT PROTEIN SCIENCE, HELMHOLTZ ZENTRUM MÜNCHEN - GERMAN RESEARCH CENTER FOR ENVIRONMENTAL HEALTH, NEUHERBERG, GERMANY; 4 IPSC CORE FACILITY, INS TUTE OF STEM CELL RESEARCH, HELMHOLTZ ZENTRUM MUNICH, NEUHERBERG, GERMANY; TECHNICAL UNIVERSITY OF MUNICH, MUNICH, GERMANY; 5 DEPARTMENT OF PEDIATRICS AND ADOLESCENT MEDICINE, ULM UNIVERSITY MEDICAL CENTER, ULM, GERMANY; 6 INS TUTE OF PHARMACEU CAL BIOTECHNOLOGY, ULM UNIVERSITY, ULM, GERMANY; 7 INS TUTE OF MOLECULAR BIOLOGY (IMB), MAINZ 55128, GERMANY.

https://biorxiv.org/cgi/content/short/2022.02.09.479353vl

Collaboration

PURA plays a role in several neuronal diseases

RNA repeat expansion disorders PURA Syndrome

PURA plays a role in several neuronal diseases

RNA repeat expansion disorders

- RNAs with expanded short repeats
- Form aggregates in the brain
- PURA was found in the aggregates

PURA plays a role in several neuronal diseases

PURA Syndrome

- Neurodevelopmental disease
- Rare (~300 cases described)
- Sporadic mutation of *PURA* gene
- Leads to heterogenous loss of functional PURA protein

Rejinders *et al* (2018): PURA syndrome: clinical delineation and genotype-phenotype study in 32 individuals with review of published literature Journal of Medical Genetics 55:104-113

Structure of PURA protein

Weber et al (2016): Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha. eLife, 5:e11297 ⁶

iCLIP can be used to assay all RNAs bound by an RNA-binding protein

We can extract PURA binding sites from crosslink peaks

PURA is a global RNA binder

PURA binds throughout the transcriptome:

- 57,674 PURA binding sites
- on 4,880 RNAs

PURA preferentially binds in the 3'UTR and CDS of protein-coding genes

PURA binding sites are single stranded

- RNAplfold
- Unpaired probablitiy
- sliding window approach
- Z-score of bound squence over random sequences

PURA binds and regulates 1019 target RNAs and 672 target proteins

PURA binds and regulates 1019 target RNAs and 672 target proteins

Cellular functions of RNA-binding proteins

PURA bound targets are enriched in cytoplasmic granules

Khong *et al* (2017): The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Hubstenberger *et al* (2017): P-Body purification reveals the condensation of repressed mRNA regulons.

PURA localizes to P-bodies and these are depleted in PURA knockdown

