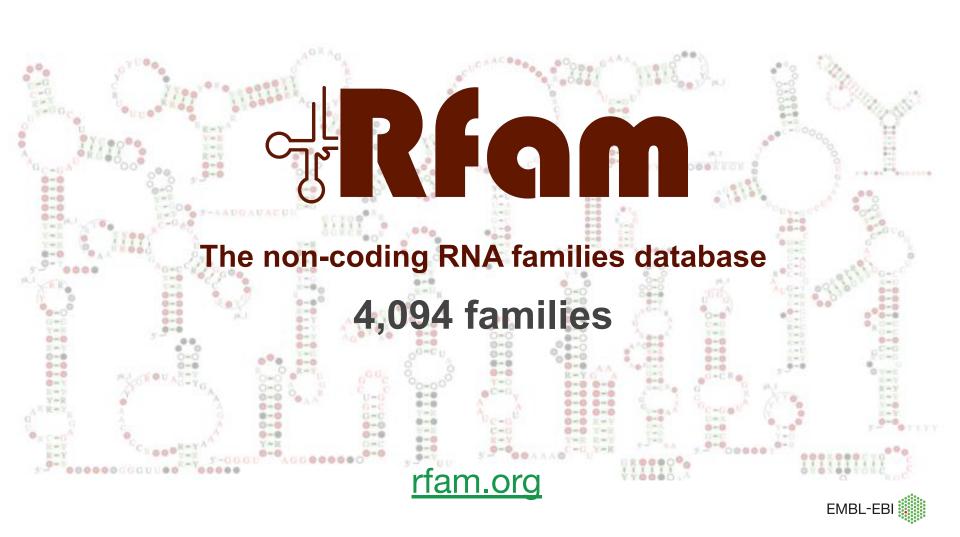


Nancy Ontiveros

nancyontiveros@ebi.ac.uk


Benasque, 16 August 2022

Session overview

- Rfam introduction
- Rfam SEEDs
- 3D updates
- R-scape improvements
- Wish list, possible directions and get involved

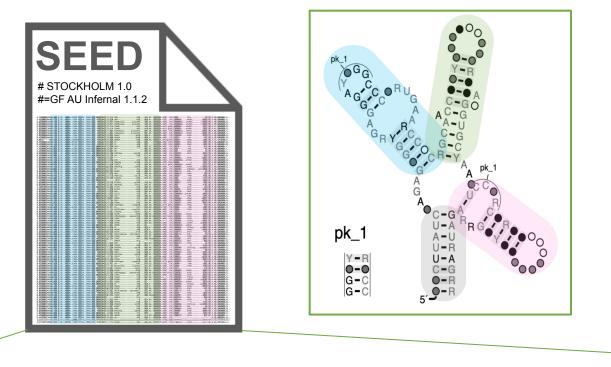
Rfam main propose

Main use of Rfam families is to be a reference to <u>annotate genome datasets</u>, ncRNA families can be found using **Rfam** and **Infernal**

Other uses of Rfam

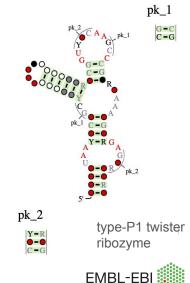
- Training sets: Rfam is also used for algorithm development.
- Browse ncRNA families and know more about them

 Rfam provide identifiers for ncRNA families Rfam ID, for example in PDBe



Where do Rfam families come from?

- Sequences are usually taken from the <u>literature</u>
- From direct submissions from our <u>users/experts</u>
 - Virus families Manja Marz, Kevin Lamkiewicz and Sandra Triebel
 - xRNAs in Potato virus Quentin Vicens
 - Bacteroidetes families Lars Barquis
 - Hovlinc Fei Qi
- Or from <u>expert databases</u>
 - ZWD Zasha Weinberg (ncRNAs from metagenomics)
 - miRBase Sam Griffiths-Jones (micro RNAs)


Rfam SEEDs

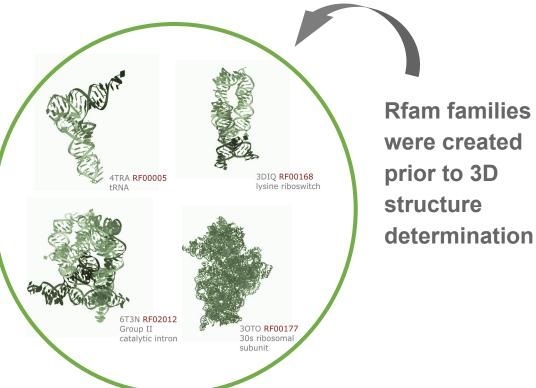
All SEED elements are important in an Rfam family

# STOCKHOLM 1.0						
#=GF AC RF03160						
#=GF ID twister-P1						
#=GF DE type-P1 twister	ribozyme					
			CHOCHECUS COLLEGE COL			
URS0000D689C5_6183/1-59	CCUG-UAA-CUCCUCCGG	AUAAA	CUGCUGGUCCCAAGC-CCA		-GGAG-GAGGG	
URS0000D67DD8_6183/1-73	GGCG-UAA-CUCCGCCUGUAGCUC	GUAAA	GAGUUACUGCCGGUCCCAAGC-CCC		-GGAG-GAGGGUUG-	
URS0000D6BBB1_12908/1-59	AAAU-UAA-UGCAACUGU		ACAGCAGUGGCAAGU-CCC		-UGCA-GAGAC	
URS0000D67361_12908/1-59	AAAU-UAA-UGCAACUGU	AUAAA	ACAGCGGUGGCAAGU-CCC			-AACA -AGGG
URS0000D6BE8B_12908/1-52	CCCU-UAA-UGCAGC	GUAAA	GCGGUGACAAGC-CCC		- <mark>UGCA</mark> -GAGUCA -UGCA-GAGUG	-AGGA
URS0000D66DB9_12908/19-74	UCCU-UAA-UGCAGCUCCAUGU-UAA-UGCAGCC	GUAAA	<mark>GGAACG</mark> GUCACAAGC-CCC		-UGCA-GAGUG	–AGGA –ACAU
URS0000D6AC7B_12908/1-53 URS0000D6919D 12908/1-69	UUGU-UAA-UGUAGCCUAUAUAUU	GUAAA	AUAUAUAGACGGUUACAAGC-CCC			-ACAU -GUAA
URS0000D6C991 12908/1-73	AGAU-UAA-UGUAGCCAUUGUAU-AG-	AUAAA	UUGAUACAAUGAGAGUUCUAAGC-CUC		-UACA-GAGGU	–GUAA –AUGU
URS0000D6C302 7029/1-66	UUUU-UAA-CCAAGCCAAC	AUAAA	GUUGACAGUCCUAAGC-CUC		-UUGG-GAAGG	-AUGU -AAAA
URS0000D6D3CD_12908/1-59	ACCG-UAA-UGCAGCCUAC	GAAAA	GUAGCCAGUCCCAAGC-CUC		-UGCA-GAGGG	-CGGA
URS0000D6C5F3 12908/18-76	ACCG-UAA-UGCAGCCUAC	GAAAA	GUAGCCAGUCCCAAGC-CUC		-UGCA-GAGGG	-CGGA
URS0000D678DB 12908/21-80	CCCG-UAA-UGCAGCCUAC	AAGAAA	GUAGCCAGUCCCAAGC-CUC		-UGCA-GAGGG	-CGGA
URS0000D6900B_12908/1-60	AGCG-UAA-UGCAGCCUAC	GUAAA	GUAGCCAGUCCUAAGC-CUC			-AACA
URS0000D69CCC_12908/1-60	AGCG-UAA-UGCAGCCUAC	GUAAA	GUAGCCAGUCCUAAGC-CUC		-UGCA-GAAGG	-GACA
URS0000D68C07 12908/1-60	AGCG-UAA-UGCAGCCUAC	AUAAA	GUAGCCAGUCCUAAGC-CUC		-UGCA-GAAGG	-CGAA
URS0000D68B2A 12908/17-75	CGCG-UAA-UGCAGCCUAC	GUAAA	GUAGCCAGUCCUAAGC-CUC		-UGCA-GAAGG	-CGAA
URS0000D671B3 12908/1-60	AGCG-UAA-UGCAGCCUAC	AUAAA	GUAGUCAGUCCUAAGC-CUC			-CGAA
URS0000D6A88F_12908/31-99	CCCG-UAA-UGCGGCUGAUCCGGC	GAGAA	GCCGGACCAACGGUGACAAGC-CCC			-AGGC
URS0000D6D268 12908/1-71	CCUC-UAA-UGCAGCCUGCCGCUGG	AAA	CCA-CGGCAGCCCGUCCCAAGC-CGC	ΔΔΔΔ	-UGCA-GAGGG	-GAGA
URS0000D65BCB 12908/1-62	ACUG-UAA-UGCAGCCUCCCC	AA	GGGGAGCGGGUUGUAAGC-CCC		-UGCA-GAACGA	-CAGG
URS0000D6A582 12908/23-73	CUUG-UAA-UGCAGC	GUAAA	ACAGUGACAAGC-CUC		-UGCA-GAGU	-CAAA
URS0000D69FD5 12908/1-54	GUUG-UAA-UGCAGC	GUAAAAA	GCGGUCACAAGC-CCC		-UGCA-GAGUG	-CAAC
URS0000D6ACCD 12908/1-54	CUCU-UAA-GGCAGCC	AUAAA	GUCAGUGACAAGC-CUC		-UGCU-GAGUCA	-AGAG
URS0000D6A1B6 12908/24-75	UCUU-UAA-UGCUAC	AUAAA	ACAGUGACAAGU-CUC		-UGCA-GAGUCA	-AAGA
URS0000D6C5EF 12908/17-67	UCUG-UAA-UGCAGC	AAGA	CCGGUUCCAAGC-CCC		-UGCA-GAGGA	-CAGA
URS0000D65F92 12908/17-72	ACUG-UAA-UGCAGC	AUUGAGAAA	CCGGUUCAAAGC-CCC		-UGCA-GAGGA	-CAGA
URS0000D6A42F_12908/21-75	UUAG-UAA-UGUGGC	UUGAAAAA	ACAGUUGCAAGC-CUC	UUUGAAAAA	-CACA-GAGCA	-CUAA
URS0000D68F1F 12908/25-79	UCUG-UAA-UGUGAC	AUGAAAAA	GGAGUUGUAAGU-CUC	CAUGAAAAA	- <mark>CACA</mark> -GAACA	-CAGA
URS0000D6C8BE 12908/30-81	CUUU-UAA-UGCCAC	AUAAA	GCGGUUGCAAGU-CCG	CAUAAA	- <mark>GGCA</mark> -GAGCA	-GAAA
URS0000D6CC91 12908/1-60	UCAU-UAA-UGCGACUAAC	GUAAA	GUUAAAGGUCUAAAGU-CCL	UGUAAA	-CGCA-GAUAG	AUGA
URS0000D6A3F9_12908/24-83	CUUU-UAA-UACAGCUGGU	GUAAAU	GCCAAAGGUCACAAGC-CCL	UGUAAAU	- <mark>UGUA</mark> -GAGUG	-AAGU
URS0000D691F4 12908/1-55	GUUG-CAA-CUCUAC	AUGAGAAA	CCAGUUGCAAGU-CUC	GAUGAGAAA	- <mark>AGAG</mark> -GAGCA	-CAAC
URS0000D6B302_12908/1-54	GUUG-CAA-CUCUAC	AUGAGAA	CCAGUUGCAAGU-CUC	GAUGAGAA	- <mark>AGAG</mark> -GAGCA	-CAAC
URS0000D67BFD_12908/1-55	GUCG-UAA-CCAUAC	AUGAGAAA	CCGGUCCCAAGU-CCC		- <mark>AUGG</mark> -GAGGG	-CGAC
URS0000D68282_12908/1-61	GUUG-UAA-ACACGCCACU	AGAAA	AGUGAAGGUCGCAAGC-CCL		- <mark>GUGU</mark> -GAGCG	-CAAC
URS0000D67FC0_12908/1-63	GGUG-UAA-CACGGCUACGG	GUAAAC	CCGUAAAGGUUCAAAGU-CCL	UGUAAAC	- <mark>ugug</mark> -gauga	-CACC
URS0000D6AA51_12908/1-63	GGUG-UAA-CACGGCUACGG	GGAAAC	<mark>ccguaaag</mark> guucaaagc-c <mark>cl</mark>		- <mark>ugug</mark> -gauga	-CACC
URS0000D695F0_12908/23-89	GAAA-UAA-UGCUACCAGACU	AUGAA	AGUCUGCCCGUUCCAAGU-CGC		- <mark>AGCA</mark> -GAGGA	-UUUC
URS0000D6AF4C_6183/1-72	CUCU-CAA-CUCCGCCUGUAGCUCC		GGGG <mark>UUACUGCCG</mark> GUCCCAAGC-C <mark>CC</mark>			-CGGG
URS0000D6C384_12908/1-78			UGUC-GUG <mark>UU</mark> C <mark>GUG</mark> CCGGUCCCAAGC-CCC		- <mark>UGGG</mark> -GAGGU	
#=GC SS_cons	((((((((BB<<<<<	,,,,,,	>>>>>< <aaabb>></aaabb>		.))))aaa	
#=GC RF	uuuu.UAA.uGCaGCCaguaucu	AuAAA	gauacuGcCGGUCCCAAGC.CCC	igAuAAA	.uGCa.GAGGG	.aaaa
//						

- Number of sequence
- Alignment
- Secondary Structure reference (SS_cons)
- Reference sequence (RF)

Ongoing projects to update Rfam families

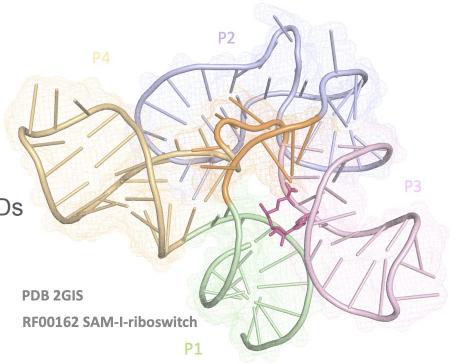
126 Rfam families map 3D information, 30 of them are already reviewed and updated



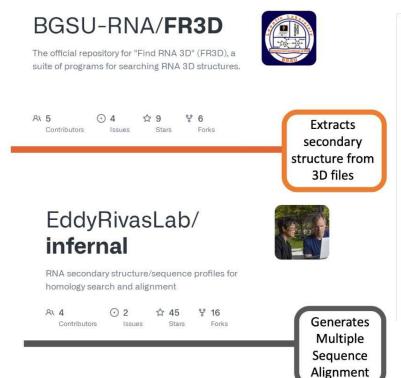
Dr. Elena Rivas

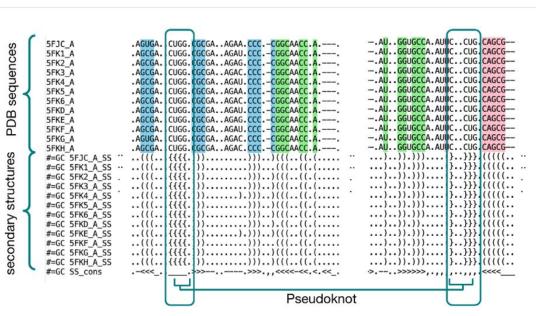
We analysed all Rfam families and 30 families have been selected and updated with R-scape model

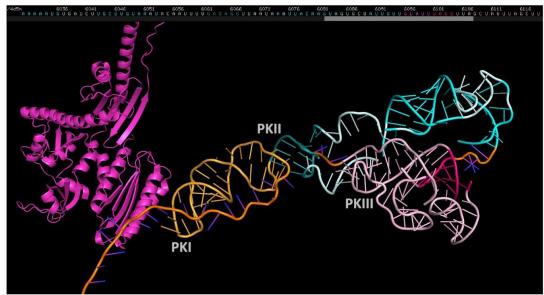
Rfam is updating families using 3D structures

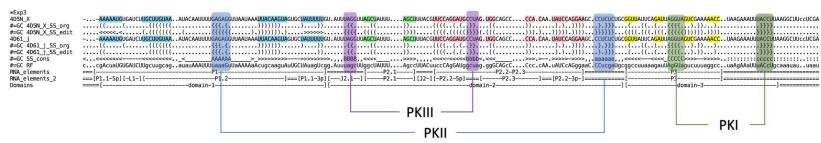

Steps to improve Rfam alignments with 3D

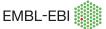
1. Align PDB sequences in SEEDs


2. Review secondary structure

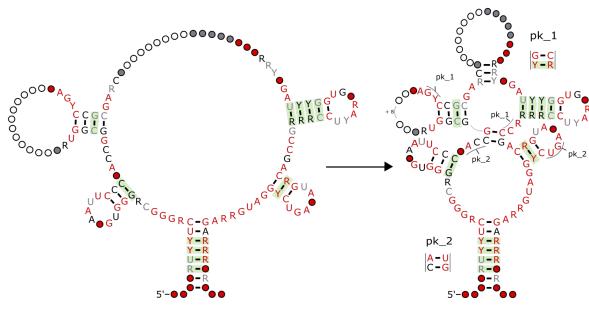

3. Update family


Step 1. Align PDB sequences/structures





Step 2. Review secondary structure from 3D



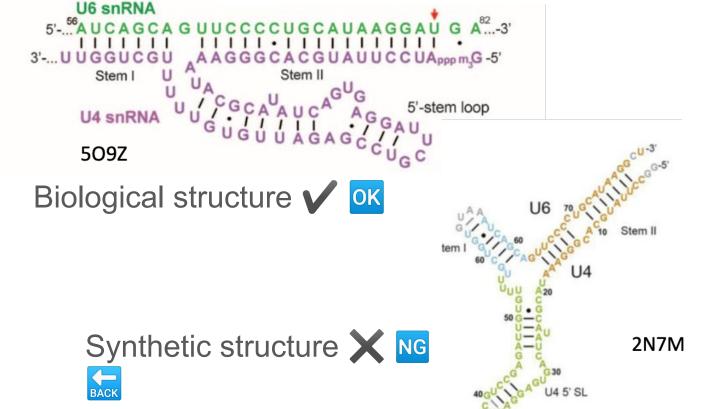
Step 3. Update 2D consensus in Rfam

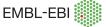
RF00050 FMN riboswitch

- Add, remove or correct base pairs
- Include missing structures like pseudoknots

previous model

updated model




What kind of issues do we deal with

- Inconsistent secondary structures → manually eliminated
- Inconsistent reference sequence → need a refinement with Infernal
- Modified nucleotides → manually corrected in the secondary structure consensus
- <u>Pseudoknots</u> need to be include manually in the secondary structure consensus
- Chimeric structures that do not reflect the correct secondary structure

Example case: inconsistent secondary structure

Rfam SEEDs enriched with 3D information

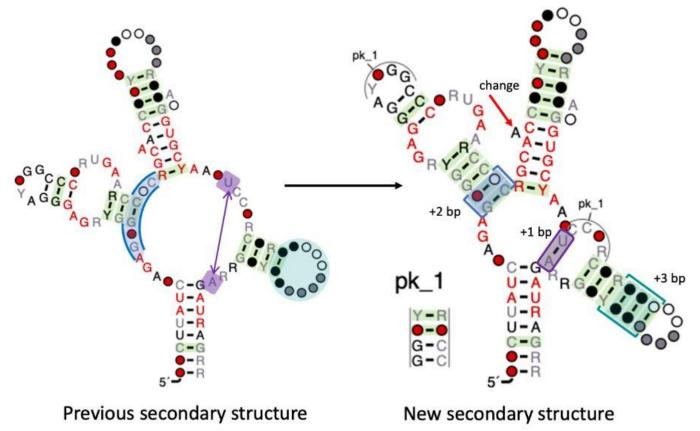
RF00015 - U4 spliceosomal RNA

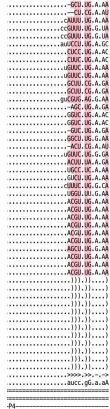
AA0Y02000456.1/44132-43994

```
AUUCUAGUGC.ACGGGUUU.UACGCAUAUCAGUGAGGAUUCG.UCCGAGAUUGCGUUU..UUGCU
             AACU03000146.1/753634-753781
                                                 AGCUUUGCGC.UGGGGCGA.UAACGUGACCAAUGAGGCUUU-.GCCGAGGUGCGUUUA..UUGCU
             Z74042.2/30433-30295
             AF0F01001265.1/35199-35370
                                                 AUCCAAGUGC.AUGGGCGU.UUUCCUUCUCGUGAAGCGAUAAGCUGAGAGAGAAUU..UUGCU
                                                 GGCCUUAUGC.ACGGGAAA.UACGCAUAUCAGUGAGGAUUCG.UCCGAGAUUGUGUUU..UUGCU
             URS00008FED30 32630/1-92
             TRS00001143F5 4932/1-160
                                                 AUCCUUAUGC. ACGGGAAA. UACGCAUAUCAGUGAGGAUUCG. UCCGAGAUUGUGUUU... UUGCU
             URS00008FED2D 9606/1-145
                                                 AGCUUUGCGC.AGUGGCAG.UAUCGUAGCCAAUGAGGUUUA-.UCCGAGGCGCGAUUA..UUGCU
RNAcentral
             URS00008FED2F 4932/1-67
                                                 AUCCUUAUGC.ACGGGAAA.UACGCAUAUCAGUGAGGAUUCG.UCCGAGAUUGUGUUU..UUGCU
             URS0000200C70 9606/1-145
                                                 AGCUUUGCGC.AGUGGCAG.UAUCGUAGCCAAUGAGGUUUA-.UCCGAGGCGCGAUUA..UUGCU
   IDs
             #=GR URS00008FED30 32630/1-92
                                       2N7M X SS
                                                       .....((.((.((.((....(((....)))..)))))))
                                                            .....((.((.(((.....(((.....))))..))))))
             #=GR URS00001143F5 4932/1-160
                                       3JCM E SS
 3D PDB
             #=GR URS00008FED2D 9606/1-145
                                       3JCR M SS
secondary
                                       5GAN_V_SS
                                                      #=GR URS00001143F5 4932/1-160
                                       5GAP_V_SS
             #=GR URS00008FED2F 4932/1-67
structures
             #=GR URS00001143F5 4932/1-160
                                       5NRL 4 SS
             #=GR URS0000200C70 9606/1-145
                                                  509Z_4_SS
             #=GC SS cons
                                                  #=GC RF
                                                 AUCcUUGuGC.AgGGGcAa.UaccccuqcCAGUGAGGaUUcq.uCcGAGqcqqqquUu..uUGCU
             #=GC RNA motif k turn
                                                                      Annotations
             #=GC RNA_structural_elements
                                                               =====[------]========
             //
```

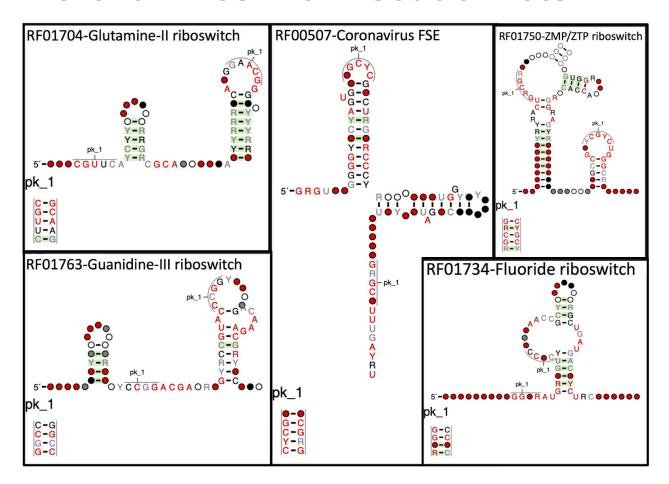
- RNA structural elements
- RNA motifs
- RNA ligand

let us know if you find them useful


annotations are a proposal/prototipe,


AUCUUUGUGCuUGGGGCAA. UACGAUAGUGUGAAGCUUU-. GCUGAUGCAUCGUGA.. UUGCU

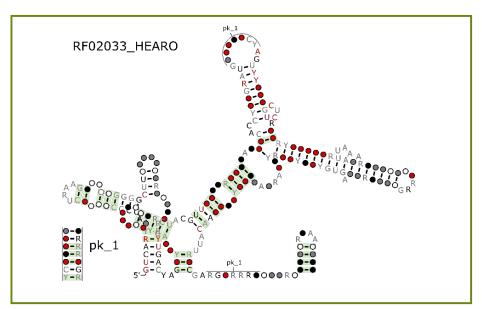
RF000162 - SAM riboswitch improved

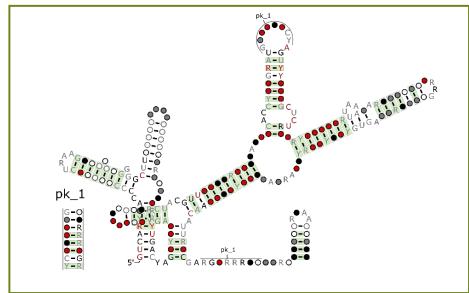

AF027868.1/5245-5154 AF269983.1/571-671 AJ000974.1/281-386 AL596164.1/95936-95817 AL591974.1/109385-109266 U52812.1/691-829 AL596169.1/221462-221354 AL591980.1/66651-66543 AL596172.1/176254-176136 AL591983.1/96176-96058 AL596170.1/192-86 AL591980.1/89597-89491 AL939119.1/177986-178133 AB090330.1/380-279 L42943.1/254-144 AF270301.1/145-36 AJ002571.1/38016-37861 AE017333.1/969726-969839 BX571856.1/15939-16037 AE017225.1/3092372-3092274 AP006716.1/475254-475360 AP006716.1/507636-507743 CP000001.1/185418-185523 CP000001.1/3927237-3927096 CP000046.1/2381002-2380907 URS000080DF35 32630/1-94 URS000080E1B3_911092/1-94 URS0000BC4670 911092/1-95 URS000080E047 32630/1-94 URS000080DF6B 911092/1-94 URS000080DFE5 911092/1-94 URS000080DDBE_1423/1-119 URS0000A7634F 911092/1-94 URS0000A76377 911092/1-94 URS0000A76363_911092/1-94 #=GR URS000080DF35 32630/1-94 #=GR URS000080E1B3 911092/1-94 #=GR URS0000BC4670 911092/1-95 #=GR URS000080E047 32630/1-94 #=GR URS000080E047 32630/1-94 #=GR URS000080E047 32630/1-94 #=GR URS000080DF6B 911092/1-94 #=GR URS000080DFE5 911092/1-94 #=GR URS000080DDBE 1423/1-119 #=GR URS0000A7634F 911092/1-94 #=GR URS0000A76377 911092/1-94 #=GR URS0000A76363 911092/1-94 #=GC SS cons #=GC RF #=GC RNA motif k turn #=GC RNA_ligand SAM #=GC RNA structural elements

More families with Pseudoknots

Rfam families updated using R-scape

Dr. Elena Rivas

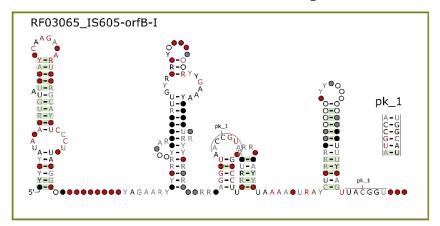

Rfam option (--Rfam)

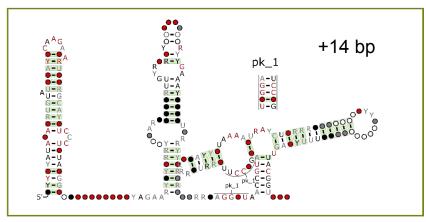

to avoid tr,sc and other base pairs that Rfam cannot use

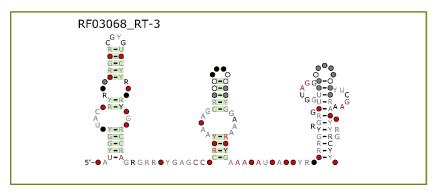
Family	Rfam Basepairs	R-scape Basepairs	Improvment	Usable	Rfam vs Covariance Rscape	win	Usable
RF02033_HEARO	31	55	24	V	31/55	24	V
RF03065_IS605-orfB-I	27	41	14	V	27/41	14	$\overline{\checkmark}$
RF02969_DUF3800-I	28	40	12	$\overline{\checkmark}$	28/32	4	$\overline{\checkmark}$
RF02913_pemK	15	25	10	$\overline{\checkmark}$	15/17	2	$\overline{\checkmark}$
RF01867_CC2171	6	16	10	$\overline{\checkmark}$	5/6	1	$\overline{\checkmark}$
RF02221_sRNA-Xcc1	16	25	9	$\overline{\checkmark}$	16/17	1	$\overline{\checkmark}$
RF03068_RT-3	20	28	8	$\overline{\checkmark}$	20/28	8	V
RF03072_raiA	36	44	8	$\overline{\checkmark}$	36/42	6	$\overline{\checkmark}$
RF03135_L4-Archaeoglobi	21	29	8	$\overline{\checkmark}$	21/25	4	$\overline{\checkmark}$
RF03064_RAGATH-18	17	24	7	$\overline{\checkmark}$	17/17	0	×
RF02987_GA-cis	16	22	6	$\overline{\checkmark}$	16/17	1	$\overline{\checkmark}$
RF03077_RT-2	35	40	5	\checkmark	35/38	3	$\overline{\checkmark}$
RF02005_group-II-D1D4-6	47	52	5	$\overline{\checkmark}$	47/50	3	$\overline{\checkmark}$
RF02944_c4-2	24	29	5	$\overline{\checkmark}$	24/25	1	$\overline{\checkmark}$
RF02968_DUF3800-IX	18	22	4	\checkmark	18/19	1	\checkmark
RF01688_Actino-pnp	9	12	3	\checkmark	09/12	3	$\overline{\checkmark}$
RF03144_eL15-Euryarchaeota	11	14	3	\checkmark	11/14	3	$\overline{\checkmark}$
RF01731_TwoAYGGAY	42	45	3	\overline{V}	42/44	2	$\overline{\checkmark}$
RF01794_sok	15	18	3	\overline{V}	15/17	2	$\overline{\checkmark}$
RF03158_L31-Actinobacteria	9	12	3	\checkmark	9/11	2	$\overline{\checkmark}$
RF02004_group-II-D1D4-5	44	47	3	\checkmark	44/45	1	$\overline{\checkmark}$
RF02947_cow-rumen-2	16	19	3	$\overline{\checkmark}$	16/17	1	$\overline{\checkmark}$
RF00062_HgcC	1	4	3	\checkmark	1/2	1	\checkmark
RF01864_plasmodium_snoR21	0	3	3	$\overline{\checkmark}$	0/1	1	$\overline{\checkmark}$
RF03046_Pseudomonadales-1	26	29	3	$\overline{\checkmark}$	26/27	1	\overline{V}
RF03019_RT-16	32	35	3	$\overline{\checkmark}$	32/33	1	$\overline{\checkmark}$

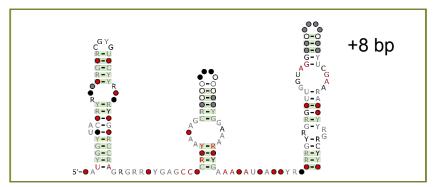
Covariance

HEARO updated with R-scape model

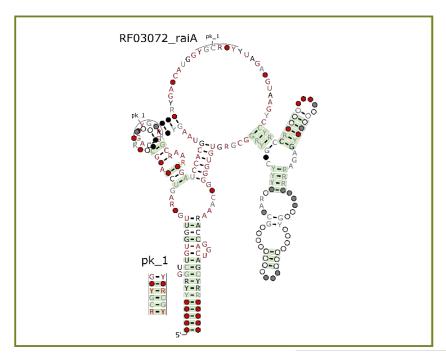


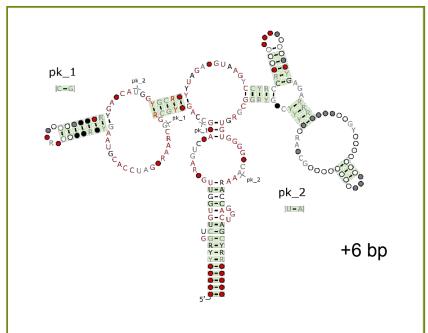



+24 base pairs with covariance support



orfB-I and RT-3 updated with R-scape model





raiA updated with R-scape model

Wish list - what do users want in Rfam

- Include non Watson Crick base pairs
- Include long interactions (viruses)
- Update more frequently
- Integrate chemical probing data (SHAPE data)
- Variants, human ncRNAs and diseases
- Include protein binding sites (crosslinking data)
- Include other structural information (like triplets)

Possible directions for Rfam

Rfam B, a database for all ncRNA families using secondary structure predictions

Get involved!

- LitScan, help us to reinforce the known names
- Wikipedia, "You are the experts", help us to improve the summary of your favorite ncRNA
- Families, New ncRNA?, why not submit a family
 - if you have a sequence with function,
 - better if you have an alignment,
 - better if you have an alignment and the biochemical tests for the secondary structure

Alex Bateman

Ioanna Kalvari

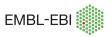
Useful references

Any suggestions are very welcome!, get in contact with us Rfam Help, https://docs.rfam.org

Want to know more about Rfam and how to search Rfam families, here our last publications

Nucleic Acids Research

Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Kalvari et al. NAR (2020)


Non-coding RNA analysis using the Rfam database. Kalvari et al. Curr. Protoc. Bioinformatics (2018)

Web http://rfam.org/

Twitter https://twitter.com/RfamDB @RfamDB

Github: https://github.com/Rfam

Blog: https://xfam.wordpress.com/tag/rfam/

