High-quality customizable algorithms for RNA 3D structure alignment

<u>Maciej Antczak^{1,2},</u> Michal Zurkowski¹, Marta Szachniuk^{1,2}

1) Institute of Computing Science, PUT

RNAPOLIS

2) Institute of Bioorganic Chemistry, PAS

Benasque 2022, 07.08-20.08.2022

- Introduction
- Algorithms description
- Experimental results
- Conclusions

- The **alignment** of **evolutionary-related structures** reveals
 - a correspondence between conserved residues and motifs,
 - that **may be indicative** of **common biological functions**.

- **3D structure alignment** is **valuable** in **various applications**, e.g.:
 - homology modeling,
 - structural classification,
 - function prediction, etc.

- While 3D structures:
 - **differ** in **the chain(s) length** and/or **the sequence**,
 - **differ** in **structural complexity** and/or **topology**,
 - exhibit conformational changes.

• When one is interested **not in some feasible alignment** but **the longest alignment** of **the expected accuracy** (i.e., the score computed for the particular residue alignment cannot exceed some predefined cut-off value). It represents a distance between two compared atom sets of the same cardinality after superposition, where d(ai, bi) is the Euclidean distance between the particular atom pair:

$$RMSD(A, B) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} d(a_i, b_i)^2}$$

• It is the **standard measure**.

- It is **sequence length-dependent** score.
- It is very sensitive, e.g., on slight differences of torsion angles.

The longest
alignment whose
RMSD score
does not exceed
the predefined
the predefined
cut-off set by the
user (e.g., 3.5 Å).

 It could consist of a set of discontinuous fragments.

MODEL:

A) Residue-residue mapping		C) Alignment-driven superposition of 3D RNA structures
REF(A) <-> MODEL(A)	REF(B) <-> MODEL(B)	
A1 <-> A1	B1 <-> B1	
A2 <-> A2	B2 <-> B2	
A3 <-> A3	B3 <-> B3	.77~
A4 <-> A4	B4 <-> B4	
A5 <-> A5	B5 <-> B5	
A6 <-> A6	B6 <-> B6	
A7 <-> A7	B7 <-> B7	
A8 <-> A8	B8 <-> B8	
A9 <-> A9	B9 <-> B9	
A10 <-> A10	B10 <-> B10	
A11 <-> A11	B11 <-> B11	
A12 <-> A12	B12 <-> B12	
A13 <-> A13	B13 <-> B13	
A14 <-> A14	B14 <-> B14	
A15 <-> A15	B15 <-> B15	
A16 <-> A16	B16 <-> B16	
A17 <-> A17	B17 <-> B17	
A18 <-> A18	B18 <-> B18	
A19 <-> A19	B19 <-> B19	
A20 <-> A20	B20 <-> B20	
A21 <-> A21	B21 <-> B21	
A22 <-> A22	B22 <-> B22	
A23 <-> A23	B23 <-> B23	
B) Sequence alignment		
F: CCGCCGCGCCAUGCCUGUGGCGGCCGCCGCGCCAUGCCUGUGGCGG		

#3 Das model superimposed into the reference structure (3MEI)

CCGCCGCGCCAUGCCUGUGGCGGCCGCCGCCGCCAUGCCUGUGGCGG

The example solutions (PZ03 – sequence-dependent mode)

#1 Chen model superimposed into the reference structure (3OWZ), 3.0 Å

The example solution (PZ03 – sequence-independent mode)

Aligning mode: sequence-independent Maximal RMSD threshold: 3.50 Residues number of reference structure: 84 Residues number of model: 84 Number of aligned nucleotides: 53 RMSD score: 3.440 Processing time [ms]: 18858

REF: AGAG

MODEL: ----

- There are many solutions that **usually quite well aligning 3D structures**, such as:
 - *RMAlign* [1],
 - *R3DAlign* [2],
 - SupeRNAlign [3],

However, existing tools do not allow the user to filter nonacceptable solutions (by setting the cut-off value).

^[1] Zheng J, Xie J, Hong X, Liu S. RMalign: an RNA structural alignment tool based on a novel scoring function RMscore. *BMC Genomics*. 2019 Apr 8;20(1):276.
^[2] Ryan R. Rahrig, Neocles B. Leontis, and Craig L. Zirbel. R3D Align: global pairwise alignment of RNA 3D structures using local superpositions. *Bioinformatics*, 26(21):2689-2697.
^[3] Piątkowski, P., Jabłońska, J., Żyła, A., Niedziałek, D., Matelska, D., Jankowska, E., ... & Bujnicki, J. M. (2017). SupeRNAlign: a new tool for flexible superposition of homologous RNA structures and inference of accurate structure-based sequence alignments. *Nucleic acids research*, 45(16), e150-e150.

- **Every nucleotide** in the RNA 3D structure **is described** by the following **representative coordinates**:
 - the sugar-phosphate backbone (e.g., P or C5' atom coordinates),
 - the **ribose atoms** geometric center,
 - the **nucleobase atoms** geometric center.

Geometric search (GEOS): promising kernels identification

Identify residue
 pairs treated as
 preliminary
 kernels.

Extend preliminary kernels by adding another residue pair close to each other in 3D space to construct promising kernels.

Geometric search (GEOS): promising kernels expansion

- Expand promising kernels by adding iteratively the next
 residue pairs close to each other in 3D space.
- Calculate a superposition of the model into the reference structure:
 - at the beginning of the kernel expansion,
 - when the current kernel cannot be extended.

Advantages:

- Deterministic.
- Scalability.

Disadvantages:

- Dedicated heuristic.
- In the case of some instances, could be computationally expensive.

Genetic search (GENS): initial population

- Every individual is represented as a mapping of residues (i.e., a list of aligned residue pairs) between the model and the reference structure.
- Initial population size and a minimal number of residue pairs in individuals are configurable parameters.
- The top 10% of best individuals are preserved between two consecutive populations.

Genetic search (GENS): operators

- Mutation operators of the individual (25%):
 - Add/remove randomly selected unused residue pair from both the model and the reference to the individual.
 - Assign randomly unused residue of the model to the randomly selected residue of the reference in the individual.
- **Crossover operators** applied **for** randomly selected **individuals pair** (74%):
 - **Inject** a randomly selected **subset** of **residue pairs** of **one individual** into **another**.
 - Swap randomly selected subset of residue pairs between a pair of individuals.
- Addition of randomly seeded individual (1%).

Advantages:

- Is able to find optimal solution.
- Return many alternative acceptable solutions.

Disadvantages:

- Non-deterministic.
- Parameters tuning required.

Computational experiments summary

- A representative set of 22 challenges published in the RNA-Puzzles [1].
- Challenge #1 (46 nts).

^[1] Cruz, J. A., Blanchet, M. F., Boniecki, M., Bujnicki, J. M., Chen, S. J., Cao, S., ... & Westhof, E. (2012). RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. Rna, 18(4), 610-625.

- For every RNA-Puzzles challenge, we computed RNA 3D structure alignment between every 3D submission and the corresponding reference structure using every considered approach.
- We executed the state-of-the-art algorithms to get the alignment and then computed the RMSD score for aligned residues in the solution.
 Finally, the RMSD score was used as a cut-off value applied for the proposed algorithms for this particular model-residue pair.
- The proposed algorithms were ranked based on the total number of aligned residues for all considered model-reference pairs in the particular challenge within the context of every considered state-of-the-art algorithm independently.

Computational experiments summary (3)

Computational experiments summary (4)

Sum of the aligned fragments from the challenge

- The algorithms, i.e., geometric search heuristic (GEOS) and genetic search algorithm (GENS) solving the RNA 3D structure alignment have been proposed.
 - They are freely-available at GitHub (https://github.com/RNApolis/rnahugs).
- Results of computational experiments confirming the accuracy of the proposed algorithms have been presented.
- The proposed approaches usually outperform the state-of-the-art algorithms in terms of quality.
- **Processing efficiency** is **a limitation** of **the GENS**.
- We believe the accurate RNA 3D structure alignment simplifies, e.g., the homologous modeling of RNA tertiary structures.

Acknowledgments

Thank you for your attention!

- WWW: http://www.cs.put.poznan.pl/mantczak
- Contact: Maciej.Antczak@cs.put.poznan.pl

This work has been partially supported by the National Science Center, Poland (2019/35/B/ST6/03074) and statutory funds of Poznan University of Technology, Poland.