Automated design of dynamic programming scheme for RNA folding with pseudoknots

Bertrand Marchand^{1,2}, Sebastian Will¹, Sarah Berkemer¹, Laurent Bulteau², Yann Ponty¹

¹LIX, Polytechnique, ~Paris, France

 $^2\text{LIGM},$ Université Gustave Eiffel, $\sim\!\text{Paris},$ France

BENASQUE 2022

work to be presented at WABI 2022

Problem: MFE folding with pseudoknots, from sequence

- textbook problem: folding from sequence
- without pseudo-knots: RnaFold, mfold, RNAstructure...
- ▶ with PK and a general energy model: NP-hard [Sheikh et al., 2012, Lyngsø, 2004]
- But a variety of polynomial DP algorithms developped for specific cases: PKnots, NUPACK, gfold, CCJ, Knotty...

State of the art: DP algorithms for tractable cases

Tool	Reference	space comp.	time comp.	restriction
Pknots-RE	[Rivas and Eddy, 1999]	$O(n^4)$	$O(n^6)$	"one-hole structures"
NUPACK	[Dirks and Pierce, 2003]	$O(n^4)$	$O(n^5)$	"2 interleaved helices"
gfold	[Reidys et al., 2011]	$O(n^4)$	$O(n^6)$	genus ≤ 1
CCJ	[Chen et al., 2009]	$O(n^4)$	$O(n^5)$	"3 groups of bands"
Knotty	[Jabbari et al., 2018]	$O(n^3 + Z)$	$O(n^{5})$	"CCJ-type + optims"
Pknots-RG	[Reeder and Giegerich, 2004]	$O(n^2)$	$O(n^4)$	"simple recursive PK"

> all based on DP tables indexed by positions on the sequence

designed either with a specific target structure family or a complexity constraint in mind

Example of recursive diagram and overall idea

Figure: Examples of DP recursion rules from [Jabbari et al., 2018] and [Reidys et al., 2011]

Our contribution: a method for, given an input PK pattern, automatically deriving such rules while minimizing the number of used indices

Bertrand Marchand

Automated design of DP schemes for pseudoknotted folding

Overall pipeline

fatgraph: describes a family of structures following a PK pattern
 1 band = 1 helix with arbitrary length/bulges

Bertrand Marchand

Automated design of DP schemes for pseudoknotted folding

Example: kissing hairpins

▶ Input, this fatgraph: ∽

• **Output** of our program, these equations:

$$A = \underset{a,d,g}{\operatorname{max}} \left(\begin{array}{c} B \\ [a,d]d',g \end{array} \right] = \min \begin{cases} B \\ [a,d]d',g \end{bmatrix} = \min \begin{cases} B \\ [a,d-1]d',g \end{bmatrix}, & \text{if } d-1, \notin \{a,d',g \} \\ B \\ [a+1,d-1]d',g \end{bmatrix} + \Delta G(a,d) & \text{if } \{a+1,d-1\} \cap \{d',g \} = \emptyset \end{cases} \qquad \begin{array}{c} C' \\ [d,g]b,c \end{bmatrix} = \min \begin{cases} C' \\ [d,g-1]b,c \end{bmatrix}, & \text{if } g-1, \notin \{d,b,c \} \\ C' \\ [d+1,g-1]b,c \end{bmatrix} + \Delta G(d,g) & \text{if } \{d+1,g-1\} \cap \{b,c \} = \emptyset \end{cases}$$

$$B \\ [a,d]d',g] = \min \begin{cases} B \\ B \\ [a+1,d-1]d',g \end{bmatrix}, & \text{if } d-1, \notin \{a,d',g \} \\ B \\ [a+1,d-1]d',g \end{bmatrix}, & \text{if } d-1, \notin \{a,d',g \} \\ B \\ [a+1,d-1]d',g \end{bmatrix} + \Delta G(a,d) & \text{if } \{a+1,d-1\} \cap \{d',g \} = \emptyset, \end{cases} \qquad \begin{array}{c} C \\ C \\ [d,g]b,c \end{bmatrix} = \min \begin{cases} C \\ [d+1,g-1]b,c \end{bmatrix}, & \text{if } d-1 \notin \{g,b,c \} \\ C \\ [d+1,g-1]b,c \end{bmatrix}, & \text{if } d-1 \notin \{g,b,c \} \\ C \\ [d+1,g-1]b,c \end{bmatrix}, & \text{if } d-1 \notin \{g,b,c \} \\ C \\ [d+1,g-1]b,c \end{bmatrix} + \Delta G(d,g) & \text{if } \{d+1,g-1\} \cap \{b,c \} = \emptyset, \end{cases}$$

possible expansions:

Output equations solve folding problem restricted to the family of structures specified by the fatgraph

- can support stacking and interior loop/bulge energy terms
- allow for recursive substructures

Inner engine: tree decompositions

- treewidth: integer quantifying tree-likeness of a graph
- **tree decomposition**: gives you the tree structure
- we apply it to a representative fatgraph expansion
- essentially gives the parse tree of the DP

Figure: RNA structure graph

Tree decomposition: \sim graph parsing tree

Given a graph, tree of bags of vertices following:

- for each vertex: represented in connected set of bags
- for each edge, there is a bag containing both ends
- width: size of biggest bag minus one

- hard to compute in general but good solvers/heuristics
- **Small** on RNA structures

Bertrand Marchand

Parenthesis: treewidth values of RNAs

Figure: Canonical interactions only

Figure: Inclucing non-canonical interactions

 Histograms of treewidth values over the PDB database (graph extraction with DSSR)

Bertrand Marchand

Structural results: recovering typical recursion strategies

Main theorem

Give an helix H of **length** \geq 5 in G, any tree decomposition of G can be modified to represent H in one of two canonical ways

Structural results: recovering typical recursion strategies

Main theorem

Give an helix H of **length** \geq 5 in G, any tree decomposition of G can be modified to represent H in one of two canonical ways

+ (in our paper) an **algorithm** to re-write tree decompositions for canonical representation

Bertrand Marchand

Automated design of DP schemes for pseudoknotted folding

DP equations from tree decomposition

canonical tree dec.

- One DP table per bag/helix
- Indices of the table: intersection with parent bag
- Indices not in parent: marginalization

for each table \rightarrow number of indices \leq treewidth

DP equations from tree decomposition

canonical tree dec.

$$\begin{split} A &= \min_{a,g,h,j,k} \left(B\left[a,g,h,j\right] + \underbrace{C_{\boxtimes}}[g,h-1,j,k-1] \right) \\ B\left[a,g,h,j\right] &= \min_{e,f,i} \left(\underbrace{C_{\boxtimes}}[e,f-1,h,i-1] + C\left[a,e|f,g,i,j\right] \right) \\ \hline C\left[a,e|f,g,i,j\right] &= \min \begin{cases} C[a+1,e|f,g,i,j], \\ C[a,e-1|f,g,i,j], \\ C[a+1,e-1|f,g,i,j] + \Delta G(a,e), \\ D[a,e+1,f,g,i,j] \end{cases} \\ [b,d,f,g,i,j] &= \min_{c} \left(\underbrace{C_{\boxtimes}}[c,d-1,f,g-1] + \underbrace{C_{\boxtimes}}[b,c-1,i,j-1] \right) \end{cases}$$

D

Helix equations (for simplicity: ambiguous, Nussinov)

diag case: only one end given:

$$D[i, I|S] = \min \begin{cases} D[i+1, I|S] \\ D[i, I-1|S] \\ D[i+1, I-1|S] + score(i, I) \\ \sum_{c \in \text{ children}} M_c[I_c \subset \{i, I\} \cup S] \end{cases}$$

clique case: when all 4 extremities are constrained:

$$C_{\boxtimes}[i, j, k, l] = \min \begin{cases} C_{\boxtimes}[i+1, j, k, l] \\ C_{\boxtimes}[i, j, k, l-1] \\ C_{\boxtimes}[i+1, j, k, l-1] + score(i, j) \\ 0 \text{ if } (i, l) = (j, k) \end{cases}$$

Example: kissing hairpins - treewidth=4

a d g d a d' g bc d' g d' g h c e f b c bcdg

Bertrand Marchand

Automated design of DP schemes for pseudoknotted folding

13/16

More examples

Name	fatgraph	treewidth	non-Turner, non-recursive	Turner recursive
H-type		4	<i>O</i> (<i>n</i> ⁵)	$O(n^5)$
kissing hairpins		4	$O(n^4)$	$O(n^5)$
"L"		5	<i>O</i> (<i>n</i> ⁶)	$O(n^{6})$
"M"		5	<i>O</i> (<i>n</i> ⁶)	$O(n^{6})$
4-clique		5	<i>O</i> (<i>n</i> ⁶)	$O(n^{6})$
5-clique		5	<i>O</i> (<i>n</i> ⁶)	$O(n^6)$
5-chain	ARRAN	6	$O(n^7)$	$O(n^7)$

▶ first 4 examples: the 4 "shadows" used in gfold [Reidys et al., 2011]

 \rightarrow we recover the same complexity automatically

Features and limitations

- Can take as input a *finite* number of fatgraphs, with expansions of these fatgraphs recursively inserted.
- Regular secondary structure can also be inserted recursively
- ► Energy model: depends on what is put in the equations of the two helix cases. → stacking terms and bulges/interior-loop with same complexity cost [Lyngsøet al., 1999].
- Non-ambiguous: partition function computations

Limitations:

 Conformational space of some algorithms ([Rivas and Eddy, 1999], [Dirks and Pierce, 2003]) cannot be described with finite number of fatgraphs

Conclusion and next steps

 \blacktriangleright Interestingly \rightarrow we recover typical DP strategies from graph theory analysis

Algorithm generation: 20 seconds on my laptop to generate all examples shown
 Future steps

- Generate code directly (and not just latex)
- Complexity is "minimized" but could we prove it is optimal in some sense?

 \blacktriangleright In general: my PhD \rightarrow using treewidth to include pseudoknots into algorithms

Conclusion and next steps

 \blacktriangleright Interestingly \rightarrow we recover typical DP strategies from graph theory analysis

Algorithm generation: 20 seconds on my laptop to generate all examples shown
 Future steps

- Generate code directly (and not just latex)
- Complexity is "minimized" but could we prove it is optimal in some sense?

 \blacktriangleright In general: my PhD \rightarrow using treewidth to include pseudoknots into algorithms

Thank you

Chen, H.-L., Condon, A., and Jabbari, H. (2009).

An o (n 5) algorithm for mfe prediction of kissing hairpins and 4-chains in nucleic acids.

Journal of Computational Biology, 16(6):803-815.

Dirks, R. M. and Pierce, N. A. (2003).

A partition function algorithm for nucleic acid secondary structure including pseudoknots.

Journal of computational chemistry, 24(13):1664–1677.

Jabbari, H., Wark, I., Montemagno, C., and Will, S. (2018). Knotty: efficient and accurate prediction of complex rna pseudoknot structures. *Bioinformatics*, 34(22):3849–3856.

Lyngsø, R. B. (2004).

Complexity of pseudoknot prediction in simple models.

In *International Colloquium on Automata, Languages, and Programming*, pages 919–931. Springer.

Lyngsø, R. B., Zuker, M., and Pedersen, C. (1999). Fast evaluation of internal loops in rna secondary structure prediction. *Bioinformatics (Oxford, England)*, 15(6):440–445.

Reeder, J. and Giegerich, R. (2004).

Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics.

BMC bioinformatics, 5(1):1-12.

 Reidys, C. M., Huang, F. W., Andersen, J. E., Penner, R. C., Stadler, P. F., and Nebel, M. E. (2011).
 Topology and prediction of rna pseudoknots. *Bioinformatics*, 27(8):1076–1085.

Rivas, E. and Eddy, S. R. (1999).

A dynamic programming algorithm for rna structure prediction including pseudoknots.

Journal of molecular biology, 285(5):2053–2068.

Sheikh, S., Backofen, R., and Ponty, Y. (2012). Impact of the energy model on the complexity of rna folding with pseudoknots. In *Annual Symposium on Combinatorial Pattern Matching*, pages 321–333. Springer.