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Problem: MFE folding with pseudoknots, from sequence

...AUGCAAAUGCC...

?

▶ textbook problem: folding from sequence

▶ without pseudo-knots: RnaFold, mfold, RNAstructure...

▶ with PK and a general energy model: NP-hard [Sheikh et al., 2012, Lyngsø, 2004]

▶ But a variety of polynomial DP algorithms developped for specific cases: PKnots,
NUPACK, gfold, CCJ, Knotty...
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State of the art: DP algorithms for tractable cases

Tool Reference space comp. time comp. restriction

Pknots-RE [Rivas and Eddy, 1999] O(n4) O(n6) “one-hole structures”

NUPACK [Dirks and Pierce, 2003] O(n4) O(n5) “2 interleaved helices”

gfold [Reidys et al., 2011] O(n4) O(n6) genus ≤ 1

CCJ [Chen et al., 2009] O(n4) O(n5) “3 groups of bands”

Knotty [Jabbari et al., 2018] O(n3 + Z ) O(n5) “CCJ-type + optims”

Pknots-RG [Reeder and Giegerich, 2004] O(n2) O(n4) “simple recursive PK”

▶ all based on DP tables indexed by positions on the sequence

▶ designed either with a specific target structure family or a complexity
constraint in mind
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Example of recursive diagram and overall idea

Figure: Examples of DP recursion rules from [Jabbari et al., 2018] and [Reidys et al., 2011]

▶ Our contribution: a method for, given an input PK pattern, automatically
deriving such rules while minimizing the number of used indices
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Overall pipeline

▶ fatgraph: describes a family of structures following a PK pattern

▶ 1 band = 1 helix with arbitrary length/bulges
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Example: kissing hairpins

▶ Input, this fatgraph:

possible expansions:

▶ Output of our program, these equations:

▶ Output equations solve folding problem restricted to the family of structures
specified by the fatgraph

▶ can support stacking and interior loop/bulge energy terms

▶ allow for recursive substructures
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Inner engine: tree decompositions

▶ treewidth: integer quantifying tree-likeness of a graph

▶ tree decomposition: gives you the tree structure

▶ we apply it to a representative fatgraph expansion

▶ essentially gives the parse tree of the DP Figure: RNA structure
graph
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Tree decomposition: ∼ graph parsing tree

Given a graph, tree of bags of vertices following:

▶ for each vertex: represented in connected set of bags

▶ for each edge, there is a bag containing both ends

▶ width: size of biggest bag minus one

tree
 tw=1

secondary structure
 tw=2

twister ribozyme
 tw=5

bag

best possible width of 
a valid tree dec.

▶ hard to compute in general but good solvers/heuristics

▶ Small on RNA structures
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Parenthesis: treewidth values of RNAs
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Figure: Canonical interactions only
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Figure: Inclucing non-canonical interactions

▶ Histograms of treewidth values over the PDB database (graph extraction with
DSSR)
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Structural results: recovering typical recursion strategies

Main theorem

Give an helix H of length ≥ 5 in G , any tree decomposition of G can be modified
to represent H in one of two canonical ways

▶ + (in our paper) an algorithm to re-write tree decompositions for canonical
representation

Bertrand Marchand Automated design of DP schemes for pseudoknotted folding BENASQUE ’22 10/16



Structural results: recovering typical recursion strategies

Main theorem

Give an helix H of length ≥ 5 in G , any tree decomposition of G can be modified
to represent H in one of two canonical ways

▶ + (in our paper) an algorithm to re-write tree decompositions for canonical
representation

Bertrand Marchand Automated design of DP schemes for pseudoknotted folding BENASQUE ’22 10/16



DP equations from tree decomposition

example fatgraph

canonical tree dec.

▶ One DP table per bag/helix

▶ Indices of the table: intersection with parent
bag

▶ Indices not in parent: marginalization

for each table → number of indices ≤ treewidth
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DP equations from tree decomposition

example fatgraph

canonical tree dec.
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Helix equations (for simplicity: ambiguous, Nussinov)

diag case: only one end given:

D[i , l |S ] = min


D[i + 1, l |S ]
D[i , l − 1|S ]
D[i + 1, l − 1|S ] + score(i , l)∑

c∈ childrenMc [Ic ⊂ {i , l} ∪ S ]

clique case: when all 4 extremities are constrained:

C⊠[i , j , k , l ] = min


C⊠[i + 1, j , k , l ]

C⊠[i , j , k , l − 1]

C⊠[i + 1, j , k , l − 1] + score(i , j)

0 if (i , l) = (j , k)
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Example: kissing hairpins - treewidth=4
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More examples

Name fatgraph treewidth non-Turner, non-recursive Turner recursive

H-type 4 O(n5) O(n5)

kissing hairpins 4 O(n4) O(n5)

“L” 5 O(n6) O(n6)

“M” 5 O(n6) O(n6)

4-clique 5 O(n6) O(n6)

5-clique 5 O(n6) O(n6)

5-chain 6 O(n7) O(n7)

▶ first 4 examples: the 4 “shadows” used in gfold [Reidys et al., 2011]

→ we recover the same complexity automatically
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Features and limitations

▶ Can take as input a finite number of fatgraphs, with expansions of these fatgraphs
recursively inserted.

▶ Regular secondary structure can also be inserted recursively

▶ Energy model: depends on what is put in the equations of the two helix cases. →
stacking terms and bulges/interior-loop with same complexity
cost [Lyngsøet al., 1999].

▶ Non-ambiguous: partition function computations

Limitations:

▶ Conformational space of some algorithms ([Rivas and Eddy, 1999],
[Dirks and Pierce, 2003]) cannot be described with finite number of fatgraphs
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Conclusion and next steps

▶ Interestingly → we recover typical DP strategies from graph theory analysis

▶ Algorithm generation: 20 seconds on my laptop to generate all examples shown

Future steps

▶ Generate code directly (and not just latex)

▶ Complexity is “minimized” but could we prove it is optimal in some sense?

——

▶ In general: my PhD → using treewidth to include pseudoknots into algorithms

Thank you
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