Regulation of Gene Expression via Unproductive Splicing

Dmitri Pervouchine ${ }^{1,2,3}$
BENASQUE, August 16, 2022
${ }^{1}$ Skolkovo Institute of Science and Technology, Moscow, Russia
${ }^{2}$ Faculty of Bioengineering and Bioinformatics, Moscow State University
${ }^{3}$ Faculty of Chemistry, Moscow State University

Integrative transcriptomic analysis suggests new autoregulatory splicing events coupled with nonsense-mediated mRNA decay

Dmitri Pervouchine ${ }^{\oplus 1,2^{*}}$, Yaroslav Popov ${ }^{2}$, Andy Berry ${ }^{3}$, Beatrice Borsari ${ }^{4}$, Adam Frankish ${ }^{3}$ and Roderic Guigó ${ }^{4,5}$
${ }^{1}$ Skolkovo Institute of Science and Technology, Ulitsa Nobelya 3, Moscow 121205, Russia, ${ }^{2}$ Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, 119234 Moscow, Russia, ${ }^{3}$ European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SA Hinxton, Cambridge, UK, ${ }^{4}$ Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain and ${ }^{5}$ Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain

Received February 01, 2019; Editorial Decision February 28, 2019; Accepted March 12, 2019

ABSTRACT

Nonsense-mediated decay (NMD) is a eukaryotic mRNA surveillance system that selectively
is maintained by a large number of protein factors and cis-regulatory elements, which control the balance between mRNA production and degradation (1,2). Nonsense mutations and frame-shifting splicing errors induce premature

Nonsense-mediated mRNA decay ${ }^{1}$

mRNA
 arana
 \swarrow Splicing

Normal transcript

Protein production

${ }^{1}$ Kurosaki T, Maquat LE., Nonsense-mediated mRNA decay in humans at a glance., J Cell Sci. 2016 129(3):461-7

AS-NMD Events Associated With Ultraconserved DNA Elements²

- AS-NMD is in every member of the human SR family
- Poison exons have evolved independently in most SR genes

[^0]
Autoregulation of RBP by Nonsense-Mediated Decay (NMD)

- Poison exons cause NMD when included
- Essential exons cause NMD when skipped
- Exons 6 and 12 of RBM10 gene are essential ${ }^{3}$

[^1]
Can we identify autoregulatory feedback loops?

- Inactivation of NMD \rightarrow poison and essential exons ${ }^{1}$
- RBP perturbation followed by RNA-seq \rightarrow regulated exons ${ }^{2}$
- CLIP \rightarrow RBP binding to RNA ${ }^{2}$

[^2]
Percent-Spliced-In (PSI, Ψ)

PSI $=\Psi \simeq$ proportion of transcripts

$$
\psi=\frac{i n c}{i n c+e x c}
$$

$S J=i n c+e x c \simeq$ local expression level

Statistical Significance of ψ

$$
\begin{aligned}
& \Delta \psi=\beta_{0}+\beta_{1} \log _{10}(S J)+e_{i} \rightarrow \text { residuals } \\
& z=\frac{\Delta \psi-\mu(\mathrm{SJ})}{\sigma(\mathrm{SJ})} \rightarrow \mathrm{p} \text {-value } \rightarrow \mathrm{q} \text {-value }
\end{aligned}
$$

Splicing Factors Respond to UPF1/XRN1 Co-depletion

$$
\Delta \Psi=\Psi(K D)-\Psi(\text { Control })
$$

Poison exons are more included upon NMD inactivation

Essential exons are more skipped upon NMD inactivation

Essential

$\Delta \Psi<0$

NMD inactivation, depletion of host gene, and eCLIP

NMD inactivation, depletion of host gene, and eCLIP

Serine And Arginine Rich Splicing Factor 7 (SRSF7)

- Splicing factor important for nuclear export and translation
- Overexpressed in colon and lung cancer tissues
- SRSF7 knockdown promotes apoptosis of colon and lung cancer cells
- SRSF7 regulates the splicing of the apoptosis regulator Fas
- SRSF7 maintains its homeostasis through the expression of Split-ORFs and nuclear body assembly (Königs et al, Nat Struct Mol Biol. 2020 Mar;27(3):260-273)
bioRxiv posts many COVID19-related papers. A reminder: they have not been formally peer-reviewed and should not guide health-related behavior or be reported in the press as conclusive.

New Results

Tissue-specific regulation of gene expression via unproductive splicing

Alexey Mironov, Maria Vlasenok, Sergei Margasyuk, Andrei A. Mironov, © Dmitri D. Pervouchine doi: https://doi.org/10.1101/2022.07.03.498634

This article is a preprint and has not been certified by peer review [what does this mean?].
\square
Abstract Full Text Info/History Metrics ■ Preview PDF

Abstract

Eukaryotic gene expression is regulated post-transcriptionally by a universal mechanism called

GTEX

Unproductive Splicing Events (USE)

Validated Unproductive Splicing Events

Validated Unproductive Splicing Events in SR proteins

Association btw. NMD isoform

and gene expression:

not significant
significant

- NMD-promoting \rightarrow NMD-inhibiting
mutual regulation: $\quad \square \quad \leftarrow-1$
— evidence of binding no evidence

Validated Unproductive Splicing Events in GTEx

Estimating changes in gene expression between the upper and the lower quartile of Ψ distribution using Mann-Whitney U-test

Negative association between Ψ and host gene expression level

$\Psi_{H}=$ median of the upper quartile
$\Psi_{L}=$ median of the lower quartile
$\Delta e_{l}=$ gene expression change (local)
$\Delta e_{g}=$ gene expression change (global)
$z=z$-score of Mann-Whitney test for e_{g}

Prediction of regulation by RBP

- Association of Ψ and e_{g} in GTEx: unproductive splicing
- Response of Ψ to RBP perturbations: potential regulators
- Association of RBP expression and e_{g} in GTEx: candidate regulators
- Additional evidence from CLIP, proteomics data etc

Unproductive Splicing	Validated	Novel	Total
All	48	2,831	2,879
Significant	11	568	579
Tissue-specific	5	86	91
Regulated	3	47	50
CLIP in the gene	3	31	34
Local CLIP support	3	14	17

Brain-specific expression of GABBR1

GABBR1

-2.5

$\begin{array}{ccc}-2.5 & 0.0 & 2.5 \\ \text { PTBP1 }\end{array}$
NMD-prom.
trend test: NS

- 1. adipose - visceral
- 2. adrenal gland
- 3. artery - aorta
- 4. artery - tibial
- 5. bladder
- 6. brain
- 7. brain - amygdala
- 8. brain - anterior cingulate cortex

9. brain - caudate

- 10. brain - cerebellar hemisphere
- 20. colon

20. colon

- 11. brain - cerebellum
- 21. colon - sigmoid
- 30. lung
- 12. brain-cortex 22. colon-transverse
- 23. esophagus
- 31. ovary
- 13. brain - hippocampus
- 32. pituitary
- 14. brain - hypothalamus
- 24. esophagus - gastroesophageal

33. prostate

- 15. brain - nucleus accumbens - 25. esophagus - mucosa
$\begin{array}{ll}\text { - 16. brain - putamen } & \text { - 26. heart } \\ \text { - 17. brain - spinal cord } & \text { - 27. heart - atrial appendage }\end{array}$
$\begin{array}{ll}\text { - 16. brain - putamen } & \text { - 26. heart } \\ \text { - 17. brain - spinal cord } & \text { - 27. heart - atrial appendage }\end{array}$
- 28. heart - left ventricle
- 34. skin - sun exposed

17. brain - spinal cord

- 18. brain - substantia nigra
- 29. kidney
- 30. lung
- 35. small intestine - terminal
- 36. stomach
- 37. thyroid
- 38. uterus

Predicted network of unproductive splicing events

cluster 1: increased Ψ in the brain
cluster 2: increased Ψ in the muscle
cluster 3: decreased Ψ in the brain

Brain-specific expression of DCLK4 is regulated by PTBP1 (unpublished)

BRD2: long-range RNA structure around poison exon (unpublished)

BRD2 isoforms after ASO1 treatment (PCR)

Fold change of ratio of isoforms (RT-qPCR)

Credits to Marina Petrova and Dmitry Skvortsov

Summary

- Auto- and cross-regulatory networks of unproductive splicing can be identified using large panels of transcriptomic data
- Integrative analysis of transcriptomic data brings novel insights into the structure of regulatory unproductive splicing networks, i.e., identification of novel targets and regulators
- RNA structure is involved in unproductive splicing regulation, possibly mediating the connection between protein binding and alternative splicing
- Positive feedback loops?
- Many other questions. . .

Acknowledgments

[^0]: ${ }^{2}$ Lareau et al, Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature, 446(7138), 926-9.

[^1]: ${ }^{3}$ Yue Sun et al. NAR 45(14): 8524-8540, 2017

[^2]: ${ }^{1}$ Lykke-Andersen et al. Human NMD initiates widely by endonucleolysis and targets snoRNA host genes. Genes Dev. 2014
 ${ }^{2}$ Van Nostrand et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 2020)

