

Skolkovo Institute of Science and Technology

Regulation of Gene Expression via Unproductive Splicing

Dmitri Pervouchine^{1,2,3} BENASQUE, August 16, 2022

¹Skolkovo Institute of Science and Technology, Moscow, Russia
²Faculty of Bioengineering and Bioinformatics, Moscow State University
³Faculty of Chemistry, Moscow State University

Published online 27 March 2019

Nucleic Acids Research, 2019, Vol. 47, No. 10 5293-5306 doi: 10.1093/nar/gkz193

Integrative transcriptomic analysis suggests new autoregulatory splicing events coupled with nonsense-mediated mRNA decay

Dmitri Pervouchine ^{©1,2,*}, Yaroslav Popov², Andy Berry³, Beatrice Borsari⁴, Adam Frankish³ and Roderic Guigó^{4,5}

¹Skolkovo Institute of Science and Technology, Ulitsa Nobelya 3. Moscow 121205, Russia, ²Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, 119234 Moscow, Russia, ³European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 15A Hinxton, Cambridge, UK, ⁴Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain and ⁵Universita Pompeu Fabra (UPF), Barcelona 08003, Spain and ⁵Universita Pompeu Fabra (UPF), Barcelona 08003.

Received February 01, 2019; Editorial Decision February 28, 2019; Accepted March 12, 2019

ABSTRACT

Nonsense-mediated decay (NMD) is a eukaryotic mRNA surveillance system that selectively is maintained by a large number of protein factors and cis-regulatory elements, which control the balance between mRNA production and degradation (1,2). Nonsense mutations and frame-shifting splicing errors induce premature

Nonsense-mediated mRNA decay¹

 $^1{\rm Kurosaki}$ T, Maquat LE., Nonsense-mediated mRNA decay in humans at a glance., J Cell Sci. 2016 129(3):461-7

AS-NMD Events Associated With Ultraconserved DNA Elements²

- AS-NMD is in every member of the human SR family
- Poison exons have evolved independently in most SR genes

 $^{^2 {\}rm Lareau}$ et al, Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature, 446(7138), 926-9.

Autoregulation of RBP by Nonsense-Mediated Decay (NMD)

- Poison exons cause NMD when included
- Essential exons cause NMD when skipped
- Exons 6 and 12 of RBM10 gene are essential³

³Yue Sun *et al.* NAR 45(14): 8524–8540, 2017

 \bullet Inactivation of NMD \rightarrow poison and essential exons^1

 \bullet RBP perturbation followed by RNA-seq \rightarrow regulated exons^2

$\bullet~\text{CLIP} \rightarrow \text{RBP}$ binding to RNA^2

 $^{^1\}mbox{Lykke-Andersen et al.}$ Human NMD initiates widely by endonucleolysis and targets snoRNA host genes. Genes Dev. 2014

²Van Nostrand et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 2020)

Percent-Spliced-In (PSI, Ψ)

 $PSI = \Psi \simeq$ proportion of transcripts

$$\Psi = \frac{\textit{inc}}{\textit{inc} + \textit{exc}}$$

 $SJ = inc + exc \simeq$ local expression level

Statistical Significance of $\boldsymbol{\Psi}$

$$\Delta \Psi = \beta_0 + \beta_1 \log_{10}(SJ) + e_i \rightarrow \text{residuals}$$
$$z = \frac{\Delta \Psi - \mu(SJ)}{\sigma(SJ)} \rightarrow \text{p-value} \rightarrow \text{q-value}$$

Splicing Factors Respond to UPF1/XRN1 Co-depletion

$$\Delta \Psi = \Psi(KD) - \Psi(Control)$$

Poison exons are more included upon NMD inactivation

Essential exons are more skipped upon NMD inactivation

NMD inactivation, depletion of host gene, and eCLIP

NMD inactivation, depletion of host gene, and eCLIP

Serine And Arginine Rich Splicing Factor 7 (SRSF7)

- Splicing factor important for nuclear export and translation
- Overexpressed in colon and lung cancer tissues
- SRSF7 knockdown promotes apoptosis of colon and lung cancer cells
- SRSF7 regulates the splicing of the apoptosis regulator Fas
- SRSF7 maintains its homeostasis through the expression of Split-ORFs and nuclear body assembly (Königs et al, Nat Struct Mol Biol. 2020 Mar;27(3):260-273)

bioRxiv posts many COVID19-related papers. A reminder: they have not been formally peer-reviewed and should not guide health-related behavior or be reported in the press as conclusive.

New Results

A Follow this preprint

Preview PDF

Tissue-specific regulation of gene expression via unproductive splicing

Alexey Mironov, Maria Vlasenok, Sergei Margasyuk, Andrei A. Mironov, 📀 Dmitri D. Pervouchine doi: https://doi.org/10.1101/2022.07.03.498634

This article is a preprint and has not been certified by peer review [what does this mean?].

Abstract F

Full Text Info/History Metrics

Abstract

Eukaryotic gene expression is regulated post-transcriptionally by a universal mechanism called unproductive splicing, in which mRNA is triggered to degradation by the nonsense-mediated decay (NIMD) pathway as a result of alternative splicing (AS). Only a few dozen unproductive

Unproductive Splicing Events (USE)

Validated Unproductive Splicing Events

Validated Unproductive Splicing Events in SR proteins

Validated Unproductive Splicing Events in GTEx

Estimating changes in gene expression between the upper and the lower quartile of Ψ distribution using Mann-Whitney U-test

 Ψ_H = median of the upper quartile Ψ_L = median of the lower quartile Δe_l = gene expression change (local) Δe_g = gene expression change (global) z = z-score of Mann-Whitney test for e_g

Prediction of regulation by RBP

- Association of Ψ and e_g in GTEx: unproductive splicing
- \bullet Response of Ψ to RBP perturbations: potential regulators
- Association of RBP expression and e_g in GTEx: candidate regulators
- Additional evidence from CLIP, proteomics data etc

Unproductive Splicing	Validated	Novel	Total
All	48	2,831	2,879
Significant	11	568	579
Tissue-specific	5	86	91
Regulated	3	47	50
CLIP in the gene	3	31	34
Local CLIP support	3	14	17

Brain-specific expression of GABBR1

Predicted network of unproductive splicing events

cluster 1: increased Ψ in the brain cluster 2: increased Ψ in the muscle cluster 3: decreased Ψ in the brain

Credits to Marina Petrova and Dmitry Skvortsov

- Auto- and cross-regulatory networks of unproductive splicing can be identified using large panels of transcriptomic data
- Integrative analysis of transcriptomic data brings novel insights into the structure of regulatory unproductive splicing networks, i.e., identification of novel targets and regulators
- RNA structure is involved in unproductive splicing regulation, possibly mediating the connection between protein binding and alternative splicing
- Positive feedback loops?
- Many other questions...

Acknowledgments

Marina Kalinina

Dmitry Skvortsov

Olga

Dontsova

Mariia Vlasenok

Alexey Mironov

Marina Petrova

Sergei Margasyuk

Jin Yongfeng

Cao Changchang

Russian Science Foundation

