Predicting Kinetics of RNA-RNA Interaction

Sebastian Will¹ and Rolf Backofen²

¹École Polytechnique - Institute Polytechnique de Paris

² University of Freiburg

Benasque'22

RNA–RNA interaction is a dynamic process

RNA–RNA interaction is a dynamic process

In principle, the interaction process can be studied:

- 1. *Model* as Continuous-time Markov Process (by States and Transition rates)
- 2. Solve Master Equation

Final objective: kinetics of interaction process

Definition (Markov process) The Markov process (\mathcal{X}, R, P_0) is the stochastic process governed by the master equation

$$\frac{dP}{dt} = RP,$$

Solve as

$$P_t = \exp(tR)P_0.$$

 $P_t(x) =$ probability of x at t

Joint (secondary) structures

Hybridization sites i_1, j_1, k_1, l_1 and i_2, j_2, k_2, l_2

Joint (secondary) structures

Single hybridization site i, j, k, l

$E(joint structure) = \\E(structure 1) + E(hybridization) + E(structure 2)^{1}$

The joint secondary structure landscape

Given two RNAs A and B.

Energy landscape $\mathcal{L}^{j} = (\mathcal{X}, \mathcal{N}, \mathsf{E})$

- state space $\mathcal{X} = \text{set of joint secondary structures (of A and B)}$
- neighborhood ${\cal N}$ defined by single base pair moves;

i.e. neighbors differ by 1 base pair

energy function E on jss

The joint structure state space explodes quickly

Х

Example: CGCAAUGCGAAUGCC and CGCGAUUCG

CGCAAUGCGAAUGCC

.((....)). .((..(...).)). .((.(....))). .((.((...)))). .(((....))). .(((.(..).))). .(((.(...)))). \times).)). ..((....))...)..((....))... ((....))..... ((((...)))).....

CGCGAUUCG (....) ((...)) ..(...) ..((...) ..(...)

.

CGCAAUGCGAAUGCC&CGCGAUUCG
((((((((.&.)).)))))
((((((((.&.))).))))
(((((((.&.)).)))).
$(((\ldots ((\ldots)).\&.)))\ldots$
((((&.)))
((((&)))
(((((((.&.))).))).
((.(((((((&))))))))
.(())((((((.&.)).)))).
(((((&))))
(((((((&))))))
((.(((((((&)))))))))
$((\ldots))((((((.\&.)))))))$
((((((&))))))

RRI Kinetics · S. Will

The joint structure state space explodes quickly

Х

Example: CGCAAUGCGAAUGCC and CGCGAUUCG

CGCAAUGCGAAUGCC

.(()).		
.((().)).		
.((().)). .((.(()))). .((.(()))). .(((.()))). .(((.()))). .((())).	×	CGCGAUUCG () (()) ()
)).		.().
(())		().
)		
(())		
(())		
((()))		
:		

CGCAAUGCGAAUGCC&CGCGAUUCG $\dots \dots \dots ((((((((.\&.)).)))))))$ $\dots \dots \dots \dots \dots ((((((((.\&.))))))))))$(((((((.&.)).)))). $(((\ldots ((\ldots)), \&.)))$ ((((....&.)))).....&))).....(((((((.&.)))).))). $((\ldots))((((((,\&,)),)))))$(((((.....&)))))..... $((\ldots ((((\ldots \&)))))\ldots))$ $((\ldots))((((((\&,)))))))$((((((...&...))))))

 \Rightarrow Apply coarse graining (here, even several levels)

Energy landscapes and general coarse graining

Coarse graining acts on landscapes \mathcal{L} and yields macro-landscape \mathcal{L}' .

Coarse graining assigns states $x \in \mathcal{X}$ to macro-states $\alpha \in \mathcal{X}'$.

Energy landscapes and general coarse graining

Coarse graining acts on landscapes \mathcal{L} and yields macro-landscape \mathcal{L}' .

Coarse graining assigns states $x \in \mathcal{X}$ to macro-states $\alpha \in \mathcal{X}'$.

Definition (Coarse graining matrix) $\mathbf{C} \in \mathbb{R}^{|\mathcal{X}'| \times |\mathcal{X}|}; \qquad \mathbf{C}_{\alpha x} = Pr[x \text{ assigned to } \alpha]$

Energy landscapes and general coarse graining

Coarse graining acts on landscapes \mathcal{L} and yields macro-landscape \mathcal{L}' .

Coarse graining assigns states $x \in \mathcal{X}$ to macro-states $\alpha \in \mathcal{X}'$.

Definition (Coarse graining matrix) $\mathbf{C} \in \mathbb{R}^{|\mathcal{X}'| \times |\mathcal{X}|}; \qquad \mathbf{C}_{\alpha x} = Pr[x \text{ assigned to } \alpha]$

Remarks:

- in discrete case, $\mathbf{C} \in \{0,1\}^{|\mathcal{X}'| \times |\mathcal{X}|}$.
- columns of **C** sum to 1 (stochastic)

(Re)define energy landscape as $\mathcal{L} =: (\mathcal{X}, \tilde{Z}, Z)$, where

- X is a set of states x
- Z_x are Boltzmann weights of states $\exp(-E(x)/RT)$
- \tilde{Z}_{xy} are Boltzmann weights of transition states

Then,

- states x and y are connected if $Z_{xy} > 0$.
- rate (constant) from y to x: $r_{x\leftarrow y} = \tilde{Z}_{xy}/Z_y$ (Arrhenius rate).

General coarse graining: $\mathcal{L} = (\mathcal{X}, \tilde{Z}, Z) \longrightarrow_{\mathsf{C}} \mathcal{L}' = (\mathcal{X}', \tilde{Z}', Z')$

General coarse graining: $\mathcal{L} = (\mathcal{X}, \tilde{Z}, Z) \longrightarrow_{\mathsf{C}} \mathcal{L}' = (\mathcal{X}', \tilde{Z}', Z')$

Then:

• CG by **C** determines state weights:

$$Z' = \mathbf{C}Z \qquad \equiv \qquad Z'_{\alpha} = \sum_{x \in \mathcal{X}} \mathbf{C}_{\alpha x} Z_{x}$$

• CG by **C** determines transition weights:

$$\tilde{Z}'_{\alpha\beta} = \sum_{x,y\in\mathcal{X}} \mathbf{C}_{\alpha x} \cdot \mathbf{C}_{\beta y} \cdot \tilde{Z}_{xy} \qquad \text{(canonical CG)}$$

General coarse graining: $\mathcal{L} = (\mathcal{X}, \tilde{Z}, Z) \longrightarrow_{\mathsf{C}} \mathcal{L}' = (\mathcal{X}', \tilde{Z}', Z')$

Then:

• CG by **C** determines state weights:

$$Z' = \mathbf{C}Z \qquad \equiv \quad Z'_{\alpha} = \sum_{x \in \mathcal{X}} \mathbf{C}_{\alpha x} Z_{x}$$

• CG by **C** determines transition weights:

$$\tilde{Z}'_{\alpha\beta} = \sum_{x,y \in \mathcal{X}} \mathbf{C}_{\alpha x} \cdot \mathbf{C}_{\beta y} \cdot \tilde{Z}_{xy} \qquad \text{(canonical CG)}$$

discrete case:

 $r_{\alpha \leftarrow \beta} = \sum_{x \in \alpha, y \in \beta} \Pr[y \mid \beta] r_{x \leftarrow y}$

General coarse graining: $\mathcal{L} = (\mathcal{X}, \tilde{Z}, Z) \longrightarrow_{\mathsf{C}} \mathcal{L}' = (\mathcal{X}', \tilde{Z}', Z')$

Then:

• CG by **C** determines state weights:

$$Z' = \mathbf{C}Z \qquad \equiv \quad Z'_{\alpha} = \sum_{x \in \mathcal{X}} \mathbf{C}_{\alpha x} Z_{x}$$

• CG by **C** determines transition weights:

$$\tilde{Z}'_{\alpha\beta} = \sum_{x,y\in\mathcal{X}} \mathbf{C}_{\alpha x} \cdot \mathbf{C}_{\beta y} \cdot \tilde{Z}_{xy} \qquad \text{(canonical CG)}$$

general case:

$$r_{\alpha \leftarrow \beta} = \sum_{x,y \in \mathcal{X}} \mathbf{C}_{\alpha x} \cdot \mathbf{C}_{\beta y} \Pr[y \mid \beta] r_{x \leftarrow y}$$

joint structure with hybridization site (i,j,k,l)

hybdridization site state (i,j,k,l)

hybdridization site state (i,j,k,l)

요... RRI Kinetics• S. Will

 $\Delta G(i,j,k,l) := \Delta G_{\mathsf{u}}^{A}(i,j) + \Delta G_{\mathsf{u}}^{B}(k,l) + \Delta G_{\mathsf{h}}(i,j,k,l)$

$$Z^{\mathsf{h}}(i,j,k,l) := Z^{\mathsf{A}}(i,j) \cdot Z^{\mathsf{B}}(k,l) \cdot Z^{\mathsf{hyb}}(i,j,k,l)$$

$$Z^{\mathsf{h}}(i,j,k,l) := Z^{\mathsf{A}}(i,j) \cdot Z^{\mathsf{B}}(k,l) \cdot Z^{\mathsf{hyb}}(i,j,k,l)$$

Hybridization site states coarse grain joint structures: $Z^{h} = \mathbf{C}^{h} Z^{j}$

 $Z^{\mathsf{h}}(i,j,k,l) := Z^{\mathsf{A}}(i,j) \cdot Z^{\mathsf{B}}(k,l) \cdot Z^{\mathsf{hyb}}(i,j,k,l)$

+ Fewer States + Efficient + Complex interactions

Transition rates for the hybridization site states

Transition rates defined by weights of (complex) transition states

Transition rates for the hybridization site states

Transition rates defined by weights of (complex) transition states

Grow and Shrink Moves

Shift Moves

Association and Dissociation

Continuus CG with 'traditional' discrete CG as pre-processing 1. **Discrete:** partition into *gradient basins*

Continuus CG with 'traditional' discrete CG as pre-processing 1. **Discrete:** partition into *gradient basins*

2. **Continous:** dissolve 'shallow' basins; distribute proportional to **rate** (or equivalently, transition state weight)

Continuus CG with 'traditional' discrete CG as pre-processing 1. **Discrete:** partition into *gradient basins*

2. **Continous:** dissolve 'shallow' basins; distribute proportional to **rate** (or equivalently, transition state weight)

Continuus CG with 'traditional' discrete CG as pre-processing 1. **Discrete:** partition into *gradient basins*

2. **Continous:** dissolve 'shallow' basins; distribute proportional to **rate** (or equivalently, transition state weight)

Both steps fit the concept of general coarse graining w/ corresp. matrices C^{gb} and C^c ; landscapes \mathcal{L}^{gb} and \mathcal{L}^c

Quick validation w/ FRET experiments

- kinetic mutation study: Salim et al., Biophys J, 2012
- 3 RNA fragments: HP1, HP2 from DsrA-rpoS; HP3 = HP1-variant
- HP1-HP2 can form kissing hairpin and full duplex
- HP3-HP2 cannot form complete duplex

side remark: reproducing the results works only at correct temperature

Example: E. coli MicA-ompA

>Mic A GAAAGACGCGCAUUUGUUAUCAUCAUCCUGAAUUCAGAGAUGAAAUUUUUGGCCACUCACGAGUGGCCUUUU >ompA 5'UTR CUUUUUUUUCAUAUGCCUGACGGAGUUCACACUUGUAAGUUUUCAACUACGUUGUAGACUUUACAUCGCCAG GGGUGCUCGGCAUAAGCCGAAGAUAUCGGUAGAGUUAAUAUUGGAGAGAUCCCCCGGUGAAGGAUUUAACCG UGUUAUCUCGUUGGAGAUAUUCAUGGCUAUUUUUGGAUGAUAACGAGGCCGCAAAAAAUGAAAAAGACAGCUA UCGCGAUUGCAGUGGCACUGGCUGGUUUCGCUACCGUAGCGCAGGCCGCUCCGAAAGAUAACACCUGGUACA CUGGUGCUAAAC

- Enumerate hybridization site states
- discrete coarse graining
- continuous coarse graining
- Solve macro-transition system

Total computation time: several minutes

416992 states40772 gradient basins255 continuous macro states

Interpretation of results (MicA-ompA)

요... RRI Kinetics• S. Will

Interpretation of results (MicA-ompA)

Interaction probability of mRNA positions: $Pr[i | t] = \sum_{sRNA \text{ pos. } i} Pr[(i,j) | t]$

Interpretation of results (MicA–ompA)

Interaction probability of mRNA positions: $Pr[i | t] = \sum_{sRNA \text{ nos } i} Pr[(i,j) | t]$

Take home

- Kinetics model for fairly complex RNA-RNA interaction
- Kinetic analysis of sRNA-mRNA 5'UTR interaction "in minutes"
- Tailored coarse graining enables feasible computation
- Procedure for continuous coarse graining
- Generalized coarse graining offers unified perspective: from discrete CG (e.g. gradient basin) to continuous CG (e.g. Stadler&Stadler, 2010)
- ... and allows 'back propagation'
- Interpretation at base pair resolution
- [WIP] software will be made availabe