

nanoShape: Nanopore based sequence and structure detection on novel RNA

J. White Bear, Grégoire De Bisschop, Juan-Carlos Padilla, Eric Lécuyer, Jérôme Waldispühl

nanoShape Workflow Overview

Aw, J.G.A., Lim, S.W., Wang, J.X. et al. Determination of isoform-specific RNA structure with nanopore long reads. Nat Biotechnol 39, 336–346 (2021). https://doi.org/10.1038/s41587-02

Novel Antisense RNA

Cis-NAT RNA

 \bullet

ullet

- \bullet
- \bullet

- cis-Natural Antisense Transcripts are overlapping transcripts found in every

Cis-NAT RNA

 \bullet

- different conformations.
- lacksquarecharacterize the interaction between cis-NAT

Preliminary structure probing indicate a complex re-organization exceeding the mere antisense region:

Conventional structure probing outputs an average reactivity signal resulting from an undefined set of

Our goal is to perform single molecule structural profiling using the Nanopore platform to further

Experimental Set

- >cen 3'utr
- >ik2 3'utr
- >E coli tmRNA
- >T thermophila self splicing intron
- >HCV internal entry site

ACTTGTTTAGAGAATGTAAATAAGCAATTAAACAGTGCATTCTAGCCATAGGGCATTCTACCATTTTTAAATTGTGTGCCATGCAGTCTAGTCCGCTTTTTCATGTATAGACAGTTAAATAACAATAACAATAACTA

 GGAGGGAAAAGTTATCAGGCATGCACCTGGTAGCTAGTCTTTAAACCAATAGATTGCATCGGTTTAAAAGGCAAGACCGTCAAATTGCGGGAAAGGGGTCAACAGCCGTTCAGTACCAAGTCTCAGGG GAAACTTTGAGATGGCCTTGCAAAGGGTATGGTAATAAGCTGACGGACATGGTCCTAACCACGCAGCCAAGTCCTAAGTCAACAGATCTTCTGTTGATATGGATGCAGTTCACAGACTAAATGTCGGTC GGGGAAGATGTATTCTTCTCATAAGATATAGTCGGACCTCTCCTTAATGGGAGCTAGCGGATGAAGTGATGCAACACTGGAGCCGCTGGGAACTAATTTGTATGCGAAAGTATATTGATTAGTTTTGGAG

GAGCCATAGTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGATCAACCCGCTCAATGCCTGGAGATTTGGGCGTGCCCCCGCGAGACTGCTAGCCGAGTA

Nanopore Basecalling

Nanopore Overview

А

Nanopore: Proprietary Basecalling

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling Shaojie Bai, J. Zico Kolter, Vladlen Koltun https://arxiv.org/abs/1803.01271

- Recurrent Neural Network (RNN)/ **Temporal Convolutional Neural Network (TCN)**
- Requires custom trained networks for optimal performance
- Not characterized across structure probes

Consensus errors per basecaller for the *K. pneumoniae* benchmarking set, broken down by type. Dcm refers to errors occurring in the CCAGG/CCTGG Dcm motif. Homopolymer errors are changes in the length of a homopolymer three or more bases in length (in the reference). This plot is limited to basecallers/versions with less than 1.2% consensus error and excludes redundant results from similar versions

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1727-y

Reactivity Profiles

Calculating Reactivities

Normalized SHAPE-MaP reactivity (blue) and nanoSHAPE reactivity detected by changes in current (red) and dwell time (gray) for the pri-miR-17~92 RNA.

W. Stephenson, R. Razaghi, S. Busan, K. M. Weeks, W. Timp, and P. Smibert, "Direct de 2022, doi: 10.1016/j.xgen.2022.100097.

W. Stephenson, R. Razaghi, S. Busan, K. M. Weeks, W. Timp, and P. Smibert, "Direct detection of RNA modifications and structure using single-molecule nanopore sequencing," Cell Genomics,

Basecall Error Profile

	DMSO_mod_rates											
	cen	ik2	E	Т								
0	-1.0	-1.0	-1.0	-1.0								
1	0.0	-1.0	-1.0	-1.0								
2	0.0	-1.0	-1.0	-1.0								
3	0.0	-1.0	-1.0	0.0								
4	0.0	-1.0	-1.0	0.0								
5	0.0	-1.0	-1.0	0.0								
6	0.0	-1.0	-1.0	0.0								
7	33.33333	-1.0	0.0	0.0								
8	0.0	-1.0	0.0	0.0								
9	0.0	0.0	0.0	0.0								
10	3.125	0.0	0.0	1.041666								
11	0.675675	0.0	1.2779552	0.0								
12	0.0	0.8695652	0.0761614	0.0								
13	0.147492	17.261904	0.3490401	1.311188								
14	0.592592	0.0	5.8845861	0.208768								
15	1.217656	0.0	0.3959683	0.153022								

	Condition	Insertion	Deletion	Mismatch	Average
cen	DMSO	3.9593924522324800	0.8714612548359300	0.9578974378748570	5.7988013961995
ik2	DMSO	2.999816460831550	1.1911793176931700	0.27227237590318100	4.549806615966
E	DMSO	3.8482626986964700	0.889682800559347	1.1160871116077800	5.892600103976
Т	DMSO	4.27167100379748	0.9589208789876810	1.0813439460927700	6.327439704846

DMSO_ave_mod_rates

Basecall Error Profile

Overall Modification Rates

Signal Analysis

Signal Analysis Error Profile

Gene Events

contig	position	reference_kmer	read_index	strand	event_index	vent_level_mea	event_stdv	event_length	model_kmer	model_mean	model_stdv	andardized_
cen	1	CTTGT	0	t	527	79.85	2.509	0.00465	ACAAG	78.46	3.02	0.36
cen	2	TTGTT	0	t	526	96.35	2.844	0.00531	AACAA	87.82	3.18	2.10
cen	3	TGTTT	0	t	525	103.47	1.585	0.00896	AAACA	99.38	3.45	0.93
cen	4	GTTTA	0	t	524	102.41	1.181	0.00232	TAAAC	103.45	2.68	-0.31
cen	4	GTTTA	0	t	523	104.88	1.859	0.00797	TAAAC	103.45	2.68	0.42
cen	4	GTTTA	0	t	522	98.75	1.705	0.00232	TAAAC	103.45	2.68	-1.38
cen	5	TTTAG	0	t	521	90.94	4.412	0.00432	СТААА	94.00	3.04	-0.79
cen	6	TTAGA	0	t	520	80.95	5.200	0.01096	TCTAA	84.15	2.63	-0.95
cen	7	TAGAG	0	t	519	79.07	2.177	0.02988	CTCTA	79.85	2.07	-0.30
cen	8	AGAGA	0	t	518	86.03	1.772	0.01295	тстст	79.44	2.85	1.82
cen	9	GAGAA	0	t	517	79.96	1.758	0.01129	ттстс	77.30	2.07	1.01
cen	10	AGAAT	0	t	516	78.60	1.407	0.01162	ATTCT	81.64	2.07	-1.15
cen	10	AGAAT	0	t	515	70.89	1.415	0.00398	NNNNN	0.00	0.00	inf
cen	16	TAAAT	0	t	514	75.37	2.945	0.00398	ATTTA	77.58	1.97	-0.88
cen	17	AAATA	0	t	513	95.42	2.218	0.01726	TATTT	94.78	5.53	0.09
cen	18	AATAA	0	t	512	85.11	1.536	0.00465	TTATT	94.20	2.63	-2.71
cen	19	ATAAG	0	t	511	81.96	20.145	0.00498	CTTAT	84.65	2.46	-0.86

Basecalling w/ Signal Analysis

Signal Analysis Error Profile Aw SVM Analysis vs Basecall Error Rates

Position	Num_Reads	SVM_DMSO	DMSO BC Error Rate
0	0	0.0	0.0
1	1	0.0	0.0
2	6	0.0	0.0
3	5	0.0	0.0
4	4	0.0	0.0
5	5	0.0	0.0
6	19	0.0	0.028860991446715600
7	3	0.0	0.0
8	3	0.0	0.0
9	69	0.039113483289612200	0.0027057179481295900
10	112	0.04819339905327220	0.0005850200968928840
11	30	0.0	0.0
12	76	0.0	0.0001277035019766180
13	67	0.0	0.0005130842923860550
14	78	0.0	0.0010542827925740900
15	83	0.0	0.017085364372758900

cen___error_comparison_norm__signal_out

Signal vs Basecall Error Correlation:

cen:[('DMSO'	MannwhitneyuResult(st atistic=12047.5	pvalue=1.2235595514447803e		
ik2:[('DMSO'	MannwhitneyuResult(stati stic=7622.0	pvalue=2.4365222662534698e-		
E:[('DMSO'	MannwhitneyuResult(stati stic=60241.0	pvalue=0.08134386144338046		
T:[('DMSO'	MannwhitneyuResult(stati stic=50487.0	pvalue=3.684209884609389e- ⁻		

Optimizing for error rather than truth. What does an outlier really tell you?

Loss of Structural Correlation, Aw et. al. focused only on SS loci and chose best performers

Unsupervised SVM Decision Boundary 1M6 Tetrahymena Generalized

Signal Analysis Error Profile

Expanded_SVM WilcoxonResult(pvalue=0.001340)

-20 -

-40

-60

-80

-75

-50

-25

0

25

50

75

Aw, J.G.A., Lim, S.W., Wang, J.X. et al. Determination of isoform-specific RNA structure with nanopore long reads. Nat Biotechnol 39, 336–346 (2021). https://doi.org/10.1038/s41587-020-0712-z

Deep Learning for Modification and Structure Prediction

Adding Structural Information Improving performance on SS and BP pairs

Sequer	Reference N	Position	SVM Signal A	Number of Misi	Mismatc	Unmodifie
Tetrahy	G	0	-1			
Tetrahy	A	1	-1			
Tetrahy	С	2	-1			
Tetrahy	С	3	-1			
Tetrahy	G	4	-1			
Tetrahy	Т	5	-1			
Tetrahy	С	6	1			
Tetrahy	A	7	-1	0.052770448548	AC	BP
Tetrahy	A	8	1	0.052770448548	AG	S
Tetrahy	A	9	-1			
Tetrahy	Т	10	1			
Tetrahy	Т	11	1	0.052770448548	TA	BP
Tetrahy	G	12	1			
Tetrahy	С	13	1			
Tetrahy	G	14	1	0.738786279683	GA	BP
Tetrahy	G	15	-1	0.21108179419	GA	BP
Tetrahy	G	16	1	0.36939313984	GA	BP
Tetrahy	A	17	1	0.158311345646	AG	S
Tetrahy	A	18	1			

dmso_signal_out

Tetrahymena_DMSO_modification_bias

Sequence	Mismatch	Number of Misma	Total Mismatches in Aligne	Modified Bp Freq	Posi
Tetrahyme	AC	50	1895	2.638522427440630	
Tetrahyme	AG	81	1895	4.274406332453830	
Tetrahyme	TA	83	1895	4.379947229551450	
Tetrahyme	GA	810	1895	42.74406332453830	
Tetrahyme	GC	15	1895	0.79155672823219	
Tetrahyme	GT	36	1895	1.8997361477572600	
Tetrahyme	ТС	149	1895	7.862796833773090	
Tetrahyme	СТ	336	1895	17.730870712401100	
Tetrahyme	AT	157	1895	8.284960422163590	
Tetrahyme	CA	111	1895	5.857519788918210	
Tetrahyme	CG	16	1895	0.8443271767810030	
Tetrahyme	TG	51	1895	2.691292875989450	

Error and Modification Rates are Influenced by: Sequence Position Structure Probe Stoichiometry

Supervised Learning (MultiClass)

Multi-class Neural network with Expanded Features

Multi-Class Data

0	'GACCG'	3319	't'	8	70000000	40000000	99000000	'GACCG'	70000000	000000000000000000000000000000000000000	00000000	'G'
1	'ACCGT'	3319	't'	9	90000000	700000000	640000000	'ACCGT'	30000000	000000000	000000000000000000000000000000000000000	'A'
1	'ACCGT'	3319	't'	10	70000000	500000000	320000000	'ACCGT'	30000000	000000000	00000000	'A'
1	'ACCGT'	3319	't'	11	000000000	80000000	980000000	'ACCGT'	30000000	000000000	000000000000000000000000000000000000000	'A'
2	'CCGTC'	3319	't'	12	90000000	100000000	50000000	'CCGTC'	70000000	000000000	000000000	'C'
3	'CGTCA'	3319	't'	13	03000000	300000000	320000000	'CGTCA'	000000000	000000000	000000000	'C'
3	'CGTCA'	3319	't'	14	50000000	60000000	570000000	'CGTCA'	00000000	000000000	000000000000000000000000000000000000000	'C'
4	'GTCAA'	3319	't'	15	90000000	500000000	920000000	'GTCAA'	60000000	000000000	000000000000000000000000000000000000000	'G'
5	'TCAAA'	3319	't'	16	70000000	000000000	980000000	'TCAAA'	10000000	000000000	000000000000000000000000000000000000000	'T'
6	'CAAAT'	3319	't'	17	70000000	100000000	50000000	'CAAAT'	07000000	000000000	200000000	'C'
7	'AAATT'	3319	't'	18	320000000	60000000	970000000	'AAATT'	98000000	000000000	000000000	'A'
7	'AAATT'	3319	't'	19	72000000	60000000	320000000	'AAATT'	98000000	000000000	000000000	'A'
7	'AAATT'	3319	't'	20	82000000	200000000	98000000	'AAATT'	98000000	000000000	000000000	'A'

96.7% Accuracy

Predicting base based on position and expanded features

Currently Tetrahymena only due to data size and training time

Α

С

Class True

G

Multiclass 3-NN

253789			5323
1	182108		3236
		310159	5258
			232486
A	С	G	Т

Adding Structural Information (Multi-class and Multi-output)- Tetrahymena

Neural Network with multi-output

Multi-Class & Multi-Output

1	'ACCGT'	3319	't'	9	.1900000000	47000000000	56400000000	'ACCGT'	.7300000000	780000000000 500000000000000000000000000	ABP
1	'ACCGT'	3319	't'	10	.77000000000	250000000000	232000000000	'ACCGT'	.73000000000	780000000000400000000000000000000000000	ABP
1	'ACCGT'	3319	't'	11	.90000000000	888000000000	59800000000	'ACCGT'	.73000000000	7800000000049000000000000	ABP
2	'CCGTC'	3319	't'	12	.59000000000	111000000000	465000000000	'CCGTC'	.27000000000	05000000000050000000000	CBP
3	'CGTCA'	3319	't'	13	0.030000000	203000000000	232000000000	'CGTCA'	.90000000000	070000000000230000000000	CBP
3	'CGTCA'	3319	't'	14	.0500000000	416000000000	245700000000	'CGTCA'	.90000000000	070000000006900000000000000000000000000	CBP
4	'GTCAA'	3319	't'	15	.79000000000	665000000000	209200000000	'GTCAA'	.56000000000	8000000000880000000000	GBP
5	'TCAAA'	3319	't'	16	.27000000000	860000000000	49800000000	'TCAAA'	.6100000000	020000000000880000000000	TS
6	'CAAAT'	3319	't'	17	.97000000000	831000000000	36500000000	'CAAAT'	0.070000000	68000000000 620000000000	CBP
7	'AAATT'	3319	't'	18	1.3200000000	816000000000	69700000000	'AAATT'	5.980000000	11000000000270000000000	ABP
7	'AAATT'	3319	't'	19	5.720000000	846000000000	23200000000	'AAATT'	5.980000000	1100000000082000000000	ABP
7	'AAATT'	3319	't'	20	7.820000000	202000000000	59800000000	'AAATT'	5.980000000	1100000000082000000000	ABP
7	'AAATT'	3319	't'	21	9.830000000	930000000000	232000000000	'AAATT'	5.980000000	110000000000000000000000000000000000000	ABP
7	'AAATT'	3319	't'	22	3.3800000000	60600000000	43200000000	'AAATT'	5.980000000	11000000000140000000000	ABP

Multi-output represented as concatenated y-hat additional ensemble/chained representation required

Adding Structural Information

Supervised 3-NN Multiclass Structure

98.8% Accuracy

Adding Structural Information Supervised 3-NN MultiClaa-Multioutput

			•					
ABP	35030	3165	773					
AS	110	215484	4550					
CBP			59900	6				
Class			2443	122995			1	
GBP			1604		120961	719		
GS			3654		3530	184949		
TBP			1036				78781	5
TS			3084				49	149531
	ABP	AS	CBP	CS	GBP	GS	TBP	TS

97.5% Accuracy

Predicted Class

Encoded Structural Information

Basecall:

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1

0.0 -

Š

Encoded Structural Information

W. Stephenson, R. Razaghi, S. Busan, K. M. Weeks, W. Timp, and P. Smibert, "Direct detection of RNA modifications and structure using single-molecule nanopore sequencing," Cell Genomics, vol. 2, no. 2, p. 100097, Feb. 2022, doi: 10.1016/j.xgen.2022.100097.

Next Steps

Probe Selection and Concentration

Acknowledgements

Direct Collaborators @IRCM: Grégoire De Bisschop (RNA, Nanopore, and Shape Experiments) Juan-Carlos Padilla (Nanopore Sequencing)

Supervisor: Jérôme Waldispühl

Waldispühl Group

Esteemed Collaborators: Eric Lécuyer Lécuyer Group Yann Ponty Vladimir Reinharz

Benasque Conference

Montreal Clinical Research Institute

Fonds de recherche – Nature et technologies Fonds de recherche – Santé Fonds de recherche – Société et culture