Application of Matrix Product States to Condensed Matter and Ultracold Gases

Salvatore R. Manmana

Institute for Theoretical Physics, Georg-August-University Göttingen

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

> **Entanglement in Strongly Correlated Systems** Benasque, February 21st – March 4th 2022

Some Reviews:

Matrix Product States (MPS – modern language): The density-matrix renormalization group in the age of matrix product states

Ulrich Schollwöck

Time-evolution methods for matrix-product states

Sebastian Paeckel^a, Thomas Köhler^{a,b}, Andreas Swoboda^c, Salvatore R. Manmana^a, Ulrich Schollwöck^{c,d}, Claudius Hubig^{e,d,*} arXiv:1901.05824, Annals of Phys. 411, 167998 (2019)

Density Matrix Renormalization Group (DMRG – ,old style')

The density-matrix renormalization group*

U. Schollwöck

Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems

Reinhard M. Noack^{*} and Salvatore R. Manmana^{†,*}

arXiv:1008.3477, Annals of Phys. 326, 96 (2011)

arXiv:cond-mat/0409292, Rev. Mod. Phys. 77, 259 (2005)

arXiv:cond-mat/0510321, AIP Conf. Proc. 789, 93 (2005)

Part I: General Overview

Quantum Many-Body Systems: Correlations

Correlated states:

"mean-field" picture of independent particles breaks down $\langle S_1^z S_2^z \rangle \neq \langle S_1^z \rangle \langle S_2^z \rangle + \langle (S_1^z - \langle S_1^z \rangle) (S_2^z - \langle S_2^z \rangle) \rangle$

Expectation values of observables for particles 1 and 2 *correlate with each other* a) because of entanglement b) because of mutual interactions.

Small numerical values: need *accurate* methods

Unconventional States: Topological Phases

"Topological order": <u>beyond</u> Landau paradigm

No local order parameter, instead:

- *topological invariants* (integer numbers) protection against local noise: quantum computing
- metallic surface states dissipationless transport

Examples: integer and fractional quantum Hall effect

1.0 ρ_{xv} ρ_{XX} ^{0.8} h/e² kΩ/sq ^{2.} 0.6 0.2 8 10 12 6 Magnetic field [T]

Phase transitions: jumps in transverse conductivity

Nobel Prize

How to investigate this numerically? Which quantities to compute?

local observables, topological invariants, energy gaps, entanglement properties, "Schmidt spectrum",...

Unconventional states: Out-of-Equilibrium Dynamics

Example (high-energy physics): heavy ion collisions

Fundamental questions:

- How does the system 'relax' towards a 'stationary state'?
- Temperature in the system?
- "Prethermalization"

[Berges et al., PRL 2004]

0.2

Quantum Símulators: Controlled Quench Dynamics

Out-of-Equilibrium

"Quantum Quenches" Sudden change of parameters $U_0 \rightarrow U$

Collapse and Revival of a Bose-Einstein-Condensate

M. Greiner et al., Nature (2002)

Prepared states, **Expansions**

"Release" atoms, remove a trapping potential

'Quantum Newton Cradle'

T. Kinoshita et al., Nature (2006)

Relaxation behavior Time scales Non-Equilibrium states

How to investigate this numerically? Which quantities to compute?

accurate methods for time evolution with time-independent Hamiltonians

Many-Body Systems Out-Of-Equílíbríum: Phonons

Example: light-harvesting systems

Energy transfer in ,antenna systems'

Simplified model: ring geometry coupled to phonons

[R.K. Kessing, Master thesis (U. Göttingen, 2020); R. K. Kessing et al., arXiv:2111.06137]

How to investigate this numerically? Which quantities to compute?

efficient approaches to treat phonons?

Many-Body Systems Out-Of-Equilibrium: Highly Excited Materials

S. Wall et al., Nature Physics (2010)

D. Fausti et al., Science (2011)

Photovoltaic effects p-doped n-doped

E. Manousakis PRB (2010)

How to investigate this numerically? Which quantities to compute?

accurate methods for time evolution with time-dependent Hamiltonians, formation of order or quasiparticles?

DMRG, MPS and related methods: Basic Idea

Basic idea: data compression ("quantum version")

Original - 2.4 MB

Compressed 10x 257 KB

\rightarrow Graphics (acoustics, signal transmission, etc.)

Key aspect:

Ignore modes that cannot be resolved (by the ear, the screen, ...) – excellent quality with much smaller amount of data.

Control parameter here: entanglement.

Compressed 20x 122 KB

Matrix Product State: Basíc Idea

Wave function of a generic many-body system (e.g. S=1/2 chain):

$$|\psi\rangle = \sum_{\sigma_1,\dots,\sigma_N} c_{\sigma_1,\dots,\sigma_N} |\sigma_1...$$

 \rightarrow 2^N coefficients (complex numbers)

Rewrite (using singular value decomposition, SVD):

$$|\psi\rangle = \sum_{\sigma_1,...,\sigma_N} \mathbf{A}^{\sigma_1} \mathbf{A}^{\sigma_2} \cdots \mathbf{A}^{\sigma_{N-1}} \mathbf{A}^{\sigma_N}$$

[U. Schollwöck, Annals of Physics (2011)]

$\sigma_N | \sigma_1 \dots \sigma_N \rangle$

Matrix Product State: Basíc Idea

MPS representation: local representation

$$|\psi\rangle = \sum_{\sigma_1,\dots,\sigma_N} \mathbf{A}^{\sigma_1} \mathbf{A}^{\sigma_2} \cdots \mathbf{A}^{\sigma_{N-1}} \mathbf{A}^{\sigma_N}$$

Typical question: what's the gain? Don't we still have 2^N basis coefficients?

Consider the following two aspects:

1. We can *exploit* this **local representation** for the computation of expectation values – we do not need to store the coefficients, but only the matrices!

2. We can *truncate* the matrix size in a controlled way – we need to store only relatively small matrices and still obtain a high accuracy!

[U. Schollwöck, Annals of Physics (2011)]

 $|\sigma_1 \dots \sigma_N\rangle$

Matrix Product State: Basíc Idea

MPS representation: local representation

$$|\psi\rangle = \sum_{\sigma_1,...,\sigma_N} \mathbf{A}^{\sigma_1} \mathbf{A}^{\sigma_2} \cdots \mathbf{A}^{\sigma_{N-1}} \mathbf{A}^{\sigma_N}$$

Hence, we have two goals:

1. How do we obtain these matrices?

2. How do we compute all the interesting properties listed before?

[U. Schollwöck, Annals of Physics (2011)]

 $|\sigma_1 \dots \sigma_N\rangle$

How to rewrite a wave function to MPS form

1) Starting point:
$$|\psi\rangle = \sum_{\sigma_1,...,\sigma_N} c_{\sigma_1,...,\sigma_N} |\sigma_1...\sigma_N\rangle$$

2) Singular value decomposition (SVD): $\mathbf{M} = \mathbf{U} \mathbf{S} \mathbf{V}^{\dagger}$

3) Rewrite coefficients:

$$c_{\sigma_1,\dots,\sigma_N} = \psi_{(\sigma_1),(\sigma_2,\dots,\sigma_N)} \stackrel{\text{SVD}}{=} \sum_{a_1}^{r_1} U_{\sigma_1,a_1} s_{a_1} \left(V^\dagger \right)_{a_1,(\sigma_2,\dots,\sigma_N)} \equiv$$

4) Repeat until you reach the end:

$$c_{\sigma_1,\dots,\sigma_N} = \sum_{a_1}^{r_1} \sum_{a_2}^{r_2} A_{a_1}^{\sigma_1} A_{a_1,a_2}^{\sigma_2} \psi_{(a_2\sigma_3),(\sigma_4,\dots,\sigma_N)}$$

=

$$|\psi\rangle = \sum_{\sigma_1,\dots,\sigma_N} \sum_{a_1,\dots,a_{N-1}} A^{\sigma_1}_{a_1} A^{\sigma_2}_{a_1,a_2} \cdots A^{\sigma_{N-1}}_{a_{N-2},a_{N-1}} A^{\sigma_N}_{a_{N-1}} |\sigma|$$
$$= \sum_{\sigma_1,\dots,\sigma_N} \mathbf{A}^{\sigma_1} \mathbf{A}^{\sigma_2} \cdots \mathbf{A}^{\sigma_{N-1}} \mathbf{A}^{\sigma_N} |\sigma_1 \dots \sigma_N\rangle ,$$

 $\equiv \sum A_{a_1}^{\sigma_1} \psi_{(a_1\sigma_2),(\sigma_3,\ldots,\sigma_N)}$ a_1

What about observables? Matrix Product Operators (MPO)

Similar to MPS ansatz: write operators as product of matrices

MPS:

$$|\psi\rangle = \sum_{\sigma_1,...,\sigma_N} \mathbf{A}^{\sigma_1} \mathbf{A}^{\sigma_2} \cdots \mathbf{A}^{\sigma_{N-1}} \mathbf{A}^{\sigma_N}$$

MPO:

$$\widehat{O} = \sum_{\boldsymbol{\sigma},\boldsymbol{\sigma}'} W^{\sigma_1 \sigma_1'} W^{\sigma_2 \sigma_2'} \cdots W^{\sigma_{L-1} \sigma_{L-1}'}$$

How to obtain these W matrices?

$\mathbf{A}^{\sigma_N} | \sigma_1 \dots \sigma_N \rangle$

$W^{\sigma_L \sigma'_L} | \boldsymbol{\sigma} \rangle \langle \boldsymbol{\sigma}' |$

Useful representation of MPO-matrices: Finite states machines

[G.M. Crosswhite & D. Bacon, PRA (2008); G.M. Crosshwite et al. PRB (2008)]

$$\hat{H}_{XX} = \sum_{i} \hat{S}_{i}^{+} \hat{S}_{i+1}^{-} + \hat{S}_{i}^{-} \hat{S}_{i+1}^{+}$$

$$I \qquad I \qquad A \qquad B \qquad F \qquad \\ \hat{I} \qquad \hat{I} \qquad \hat{A} \qquad \hat{S}^{+} \qquad \hat{S}^{-} \qquad 0 \qquad \\ \hat{I} \qquad \hat{I} \qquad \hat{S}^{+} \qquad \hat{S}^{-} \qquad 0 \qquad \\ \hat{I} \qquad \hat{I} \qquad \hat{S}^{-} \qquad \hat{S}^{-} \qquad \\ \hat{S}^{-} \hat{S}^{+} \qquad \\ \hat{S}^{-} \qquad \\$$

[Formulation with Abelian quantum numbers: S. Paeckel, T. Köhler & S.R.M., SciPost Phys. 3, 035 (2017) Freely available, flexible MPS code using FSM: <u>https://www.symmps.eu</u>

Properties & Advantages:

- The FSM-graphs can be used as representation of the Hamiltonian/operator unified input for all types of models possible
- Flexible control of time-dependence, 2D systems, observables,...
- Exact arithmethics by evaluation *after* construction of the operator

Good to know & very useful: Graphical Representation

"3-leg tensor" (e.g., Matrix A^{σ}):

Contraction of two indices (multiplication of two matrices)

Matrix Product State:

Matrix Product Operator:

[This is also called *Penrose graphical notation of tensors*, R. Penrose (1971)]

Ground state search with MPS

I) Imaginary time evolution until you reach the ground state

II) Iterative ground state search

Goal: Minimize

$$E = \frac{\langle \psi | \widehat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \iff \langle \psi | \widehat{H} | \psi \rangle -$$

[U. Schollwöck, Annals of Physics (2011)]

$-\lambda\langle\psi|\psi\rangle$

Finite temperature methods: purification & matrix product states

Compute thermal density matrix via a pure state in an extended system: P

$$\begin{split} \Psi_T \rangle \sim e^{-(H_P \otimes I_Q)/(2T)} \left[\bigotimes_{j=1}^L |\text{rung} - \psi_T| \right] \\ \Rightarrow \varrho_T = \frac{1}{Z} e^{-H/T} = \frac{1}{Z} \text{Tr}_Q |\Psi_T\rangle \langle \Psi_T| \end{split}$$

1

formal replacement $H \to H \otimes \mathbb{1}_{O}$

$-\operatorname{singlet}_{j}$

Fíníte temperature methods: purífication & matrix product states

Example:

[A. Tiegel, PhD thesis (Göttingen, 2016)]

Outlook 2D: PEPS, MERA & Tensor Networks

Projected Entangled Pair States (PEPS):

F. Verstraete & I. Cirac, arXiv (2004)

$$|\psi\rangle = \sum_{k_1,\dots,k_N=1}^{d} \mathcal{F}\left([A_1]^{k_1},\dots,[A_N]^{k_N}\right)|k_1,\dots,k_N\rangle$$

with $[A_i]_{l,r,u,d}^k$ tensors (e.g., square lattice: rank-4)

Multiscale Entanglement Renormalization Ansatz (MERA) & tensor networks: G. Vidal, PRL (2007)

control of entanglement via unitary transforms: 'disentanglers' + block renormalization

Purification: quantum numbers for systems without conserved quantities

Comparison of methods: J. Stolpp et al., Comp. Phys. Comm. (2021)

Typical example: Holstein model
$$H = -t \sum_{j} \left(c_{j}^{\dagger} c_{j+1} + h.c. \right) + \omega_{0}$$

Local basis optimization [e.g., C. Brockt et al. PRB (2015)]

"pp-DMRG" [T. Köhler, J. Stolpp & S. Paeckel SciPost (2021)]

 $0\sum_{j}b_{j}^{\dagger}b_{j}+\gamma\sum_{j}n_{j}^{f}\left(b_{j}^{\dagger}+b_{j}\right)$

Significantly reduce the entanglement: "Mode Optimization'

Idea: apply suitable unitary transform during the sweeps to go to a basis with smaller entanglement

Reduction of the bond dimension from 8000 to ~300 and improvement of the ground state energy!

[C. Krumnow, L. Veis, Ö. Legeza & J. Eisert PRL (2016)]

Part II: Phase Díagrams and Topologícal Propertíes at T=0

Symmetry Protected Topological Phases

Possible characterization (X.-G. Wen):

 \rightarrow new kind of order at T=0

- ➡ SPT phases possess a symmetry and a finite energy gap.
- SPT states are <u>short-range entangled</u> states with a symmetry.
- defining properties:

(a) distinct SPT states with a given symmetry cannot smoothly deform into each other without phase transition, if the deformation preserves the symmetry.

(b) however, they all can smoothly deform into the same trivial product state without phase transition, *if we break the symmetry during deformation.*

Note: "Real" Topological Phases — "long-range entanglement" (Wen)

What happens for long-ranged H?

Símple System with two SPT Phases

 $\mathcal{F}_{i,a}^{\tilde{s}} \cdot \mathcal{F}_{i+1,a}^{\tilde{s}} \Longrightarrow \mathcal{S}(2) \mathcal{S}(2) \mathcal{S}(2)$ $\begin{aligned} & \lambda_{xy} \left(\zeta_{i,1}^{x} \zeta_{i,2}^{x} + \zeta_{i,1}^{y} \zeta_{i,2}^{y} \right) \\ & + \lambda_{z} \zeta_{i,1}^{z} \zeta_{i,2}^{z} \end{aligned}$ \Rightarrow no Su(2) on ranges (anly U(1))

Analysis of "Wen's model"

Characterize topological phases via "entanglement spectrum":

F. Pollmann, A. Turner, E. Berg, and M. Oshikawa, PRB 81, 064439 (2010)

A
$$|\alpha\rangle_j$$
 B $|\beta\rangle_j$

$$|\psi\rangle = \sum_{j=1}^{\dim \mathcal{H}} \sqrt{\lambda_j} |\alpha\rangle_j |\beta\rangle_j$$

"Entanglement Splitting" test for 2-fold degeneracy:

$$ES = \sum_{j ext{ odd}} \left(\lambda_j - \lambda_{j+1}
ight)$$

test topological properties!

• staggered magnetization along the legs:

• Spin gaps:

$$\langle m \rangle = \langle S^z_{L/2,\,1} \rangle - \langle S^z_{L/2+1,\,1} \rangle$$

singlet gap: $\Delta_{S}^{0} = E_{1}(S_{\text{total}}^{z} = 0) - E_{0}(S_{\text{total}}^{z} = 0)$ triplet gap: $\Delta_{S}^{1} = E_{0}(S_{\text{total}}^{z} = 1) - E_{0}(S_{\text{total}}^{z} = 0)$ 2nd triplet gap: $\Delta_S^{1,2} = E_0(S_{\text{total}}^z = 2) - E_0(S_{\text{total}}^z = 1)$

λ_i : eigenvalues reduced density matrix, give entanglement spectrum

Analysis of "Wen's model"

Symmetry of the ladder: $D_2 \times \sigma(D_2 = \{E, R_x, R_y, R_z\}; \sigma$: rung exchange) ■ 8 distinct SPT phases: from projective representations, characterized via 'active operators'

	R_z	R_x	σ	Active operators	SPT	
E_0	1	1	1		Rung-single	
E_1	Ι	$i\sigma_z$	σ_y	$(S_{-}^{z}, S_{+}^{z}, SS_{-})$	t_x	
E_2	σ_z	Ι	$i\sigma_y$	$(S_{-}^{x}, S_{+}^{x}, SS_{-})$	t_y	
E_3	$i\sigma_z$	σ_x	Ι	$(S_{+}^{x}, S_{+}^{y}, S_{+}^{z})$	$t_0, t_x >$	
E_4	σ_z	$i\sigma_z$	$i\sigma_x$	$(S_{+}^{y}, S_{-}^{y}, SS_{-})$	t_x	
E_5	$i\sigma_z$	σ_x	$i\sigma_x$	$(S_{+}^{x}, S_{-}^{y}, S_{-}^{z})$		
E_6	$i\sigma_z$	$i\sigma_x$	σ_z	$(S_{-}^{x}, S_{-}^{y}, S_{+}^{z})$		
E_7	$i\sigma_z$	$i\sigma_x$	$i\sigma_y$	$(S_{-}^{x}, S_{+}^{y}, S_{-}^{z})$		
With $O_{\pm} = O_1 \pm O_2$						

[Z.-X. Liu, Z.-B. Yang, Y.-J. Han, W. Yi, and X.-G. Wen, PRB (2012)]

phases

 $\mathrm{et}^{\mathrm{a}}, t_{x} \times t_{x}, \ldots$ $\times t_{\rm v}$ $\times t_z$ $\times t_v \times t_z$ $\times t_z$ t_x t_z t_{v}

Phase Diagram without and with Long Range Interactions

Nearest neighbor interactions: (standard DMRG up to 400 rungs)

S.R. Manmana et al., PRB (rapid comm.) 87, 081106(R) (2013) Long-range $1/r^3$ interactions: (MPO, up to 400 rungs)

Ground-state degeneracy:

rung $S^z = 0$

triplet

-2

4

0

 λ_z

 -2°

A highly frustrated quantum magnet: $SrCu_2(BO_3)_2$

[H. Kageyama et al., PRL 82, 3168 (1999), K. Kodama et al., Science **298**, 395 (2002)]

• Network of orthogonal dimers in a plane:

2D Shastry-Sutherland lattice

- Series of fractional magnetization plateaux, e.g., at 1/8, 1/4, and 1/3 (+ further)
- Exotic states (e.g. spin-supersolid) in the vicinity or on the plateaux?
- Magnetization curve and plateaux at low fields are an ongoing challenge
- Theoretical treatment of the full 2D system very difficult

Here: Quasi-2D versions of this system

Quasi-2D Shastry-Sutherland lattice: DMRG on the 1/8 plateau

Difference in E/N: only 6e-5 !!! [S. White on Kagome: difference between VBC and spin-liquid \approx 1e-3]

E/N = -0.319238530384945

E/N = -0.319179928025625

Approaching the 2D Shastry-Sutherland lattice: magnetization curve & comparison to experiments

[Y.H. Matsuda, N. Abe, S. Takeyama, H. Kageyama,

P. Corboz, A. Honecker, S.R. Manmana, G.R. Foltin, K.P. Schmidt, and F. Mila, PRL 111, 137204 (2013)]

ED & DMRG for Real Time Evolution

Time evolution with Matrix Product States: Trotter approach

Trotter decomposition:

$$e^{-i\,dt\,\hat{H}/\hbar} = \prod_{i\,\text{odd}} e^{-i\,dt\,\hat{H}_i/\hbar} \prod_{i\,\text{even}} e^{-i\,dt\,\hat{H}_i/\hbar} + \mathcal{C}$$

Example: imaginary time evolution ("iTEBD"-variant)

 $\mathcal{O}(dt^2)$

Time evolution with Matrix Product States: Krylov-approach

Recall Lanczos projection: (Krylov-space approach)

$$e^{-i\Delta\tau/\hbar \hat{H}} |\psi(\tau)\rangle \approx \mathbf{V}_n(\tau) e^{-i\Delta\tau/\hbar \hat{H}} |\psi(\tau)\rangle$$

$$a_n = \frac{\langle v_n | \mathcal{H} | v_n \rangle}{\langle v_n | v_n \rangle},$$

Very versatile: arbitrary range interactions & geometries Two variants:

• "global Krylov method":

does not take into account MPS structure – costly!!!

"local Krylov method":

Lanczos-projection while , sweeping' & sequentely update A-matrices

 $e^{-i\Delta \tau/\hbar \mathbf{T}_n(\tau)} \mathbf{V}_n^+(\tau) |\psi(\tau)\rangle$

 $\ket{v_{n+1}} = \mathcal{H} \ket{v_n} - a_n \ket{v_n} - b_n^2 \ket{v_{n-1}}$

h ² -	$(v_{n+1} v_{n+1})$	$b_0 = 0$
v_{n+1} -	$-\frac{1}{\langle v_n v_n angle},$	

Time evolution with Matrix Product States: MPO-WI & WII approach

MPO based time evolution

• Hamiltonian expressed as a sum of terms Expand $U = \exp(-itH)$ for $t \ll 1$

Neglect overlapping terms in expansion

 $\approx 1 + t \sum_{x} H_x + t^2 \sum_{x < y} H_x H_y$

 $+t^3 \sum H_x H_y H_z + \dots$ x < y < z

Compact matrix product operator representation

 $W_{\alpha\beta}^{[n]j_nj'_n} = \alpha - \beta$

[M. Zaletel et al, PRB 91, 165112 (2015)]

 $H = \sum_{x} H_{x}$

Time evolution with Matrix Product States: Time-dependent variational principle

Basic idea of TDVP:

Tangent space

Projection onto tangent Space to MPS manifold: $\frac{d|\Psi[M]\rangle}{dt} = -iP_{T_{|\Psi[M]}\rangle\mathcal{M}_{MPS}}H|\Psi[M]\rangle$

[]. Haegeman et al, arXiv:1408.5056]

Manifold of MPS states

Corrects/improves "local Krylov" method

Part III: Dynamics Spectral Functions and Full Time Evolution

Examples

Dynamical spectral functions (also finite T, nonequilibrium)

Two-dimensional systems (this is a challenge!!!)

Out-of-time-order, OTOCs (chaos in quantum many body systems) 10^{-1}

Quantum Quenches (simulate cold gases experiments)

Today's Frontier: Time evolution in two dimensions?

Heisenberg-antiferromagnet, Neél initial state (product state):

Fixed bond-dimension m=200:

Errors grow rapidly, but some methods perform better than others at short times

Linear Response Dynamics at T=0

Characteríze Many-Body Systems: Dynamical Spectral Functions

Linear response: measure quantities of type:

$$C_{B^{\dagger},A}(\omega) \equiv \sum_{n} \langle \Psi_{0} | B | n \rangle \langle n | A | \Psi_{0} \rangle \, \delta(\omega - 0)$$

insights into (local) density of states, excitations of the system, structure factors

 $(E_n - E_0))$

Linear Response: Spectral Functions at Finite Field

З

Energy

Dynamical structure factor $S^{z}(k,\omega)$ of a S-1/2 Heisenberg chain when changing an external magnetic field:

A.C. Tiegel, S.R.M. et al., PRB(R) (2014), A.C. Tiegel et al. & S.R.M., PRB (2016), E.S. Klyushina et al., S.R.M., PRB(R) (2016).

Momentum k

[T. Köhler, Master thesis, U. Göttingen 2013]

Dynamical correlation functions: Approach using real-time evolution

$$\begin{split} \hat{H} &= J \sum_{j=1}^{L} \left[\hat{s}_{j}^{x} \hat{s}_{j+1}^{x} + \hat{s}_{j}^{y} \hat{s}_{j+1}^{y} + \Delta \hat{s}_{j}^{z} \hat{s}_{j+1}^{z} - h_{j}^{s} \hat{s}_{j}^{z} \right] \\ &= J \sum_{j=1}^{L} \left[\frac{1}{2} \left(\hat{s}_{j}^{+} \hat{s}_{j+1}^{-} + \hat{s}_{j}^{-} \hat{s}_{j+1}^{+} \right) + \Delta \hat{s}_{j}^{z} \hat{s}_{j+1}^{z} - h_{j}^{s} \hat{s}_{j}^{z} \right], \quad h_{j}^{s} = (-1)^{j} h \end{split}$$

$$S^{zz}(q,\omega) = \frac{1}{L} \sum_{j=1}^{L} e^{-iq(j-L/2)} \int_{-\infty}^{\infty} dt \ e^{i\omega t} \langle \hat{s}_{j}^{z}(t) \hat{s}_{L/2}^{z}(0) \rangle_{cc}$$
$$\stackrel{\simeq}{=} \frac{2\pi}{LT} \delta \sum_{j=1}^{L} e^{-iq(j-L/2)} \sum_{n=0}^{N} e^{i(\omega+i\eta)t_{n}} 2 \operatorname{Re} \langle \hat{s}_{j}^{z}(t_{n}) \hat{s}_{L/2}^{z}(0) \rangle_{cc}$$

Some methods show artifacts at low frequencies - not TDVP

Linear Response Dynamics at T>0

Dynamical correlation functions at finite T: Liouvillian formulation

$$G_A(\omega, T) = \frac{1}{Z} \sum_{n,m} e^{-\beta E_m} \langle m | A | n \rangle \langle n | A | m \rangle \delta(\omega)$$

Note: 1) *Difference* of *all* energies 2) MPS approach: $|\Psi_T\rangle$ vector in the Liouville space spanned by $\mathcal{H}_P \otimes \mathcal{H}_Q$

Dynamics is actually governed by Liouville equation [Barnett, Dalton (1987)] $rac{\partial}{\partial t} |\Psi_T
angle = -i\mathcal{L}|\Psi_T
angle, \qquad \mathcal{L} = \mathcal{H}_P \otimes I_Q - I_P \otimes H_Q$ (backward evolution in Q by Karrasch et al.)

$$G_A(k,\omega) = -\frac{1}{\pi} \operatorname{Im} \left\langle \Psi_T \left| A^{\dagger} \frac{1}{z-\mathcal{L}} A \right. \right\rangle$$

[A.C. Tiegel et al., PRB (2014) : proof of principle calculations] Earlier: Superoperator approach to mixed-state dynamics [Zwolak & Vidal (2004)]

 $-(E_{n}-E_{m}))$

 Ψ_T

Liouville space formalism: "Thermofields"

J. Phys. A: Math. Gen. 20 (1987) 411-418. Printed in the UK.

Liouville space description of thermofields and their generalisations

S M Barnett[†] and B J Dalton[†][‡]

[†] Optics Section, Blackett Laboratory, Imperial College of Science and Technology, London SW7 2BZ, UK [‡] Physics Department, University of Queensland, St Lucia, Queensland, Australia 4067

Received 14 January 1986, in final form 13 May 1986

Abstract. The thermofield representation of a thermal state by a pure-state wavefunction in a doubled Hilbert space is generalised to arbitrary mixed and pure states. We employ a Liouville space formalism to investigate the connection between these generalised thermofield wavefunctions and a generalised thermofield state vector in Liouville space which is valid for all cases of the quantum density operator. The system dynamics in the Schrödinger and Heisenberg pictures are discussed.

$$i\frac{d\varrho}{dt} = \left[\hat{H}, \varrho\right] \Rightarrow i\frac{d}{dt}|\varrho\rangle\rangle = \mathcal{L}|_{\theta}$$

von Neumann equation

 $\underline{o}\rangle\rangle$ Liouville equation

+ references therein

Dynamical correlation functions: Chebyshev recursion

Representation via Chebyshev polynomials:

$$G_A(\omega) = \frac{2}{\pi W \sqrt{1 - \omega'^2}} \left[g_0 \ \mu_0 + 2 \sum_{n=1}^{N-1} g_n \ \mu_n T_n(\omega') \right]$$

with

 $\mu_n = \langle t_0 | t_n \rangle = \left\langle \Psi_T \left| A^{\dagger} T_n(\mathcal{L}') A \right| \Psi_T \right\rangle$ $|t_0\rangle = A|\Psi_T\rangle, \quad |t_1\rangle = \mathcal{L}'|t_0\rangle, \quad |t_n\rangle = 2\mathcal{L}'|t_n\rangle$ W: bandwidth of \mathcal{L} \mathcal{L}' : rescaled Liouvillian, so that $W \to [-1, 1]$ $\omega' \in [-1, 1], T_n(\omega') = \cos[n(\arccos \omega')]$ g_n : damping factors \rightarrow Gaussian broadening $\eta \sim 1/N$ $g_n^J = \frac{(N - n + 1)\cos\frac{\pi n}{N+1} + \sin\frac{\pi n}{N+1}\cot\frac{\pi}{N+1}}{N+1}$ "Jackson damping"

[MPS: A. Holzner et al., PRB 83, 195115 (2011); A. Weiße et al., RMP 78, 275 (2006)]

$$|t_{n-2}\rangle - |t_{n-2}\rangle$$

Finite-T dynamics in spin-1 chains

➡ New features in the spectra at T>0?

Spín-1 chains:

S.R. White & I. Affleck, PRB (2008)

Spin-1 chains: Spectral functions at T=0 and T>0

DMRG, OBC, L=32:

QMC, PBC, L=64:

Two new features:

- At finite T, a new branch appears below the magnon branch scattering of thermally excited magnons
- With OBC, a signature of the edge-state is obtained, also at T>0

Spín-1 chains: Spectral functions at T>0

J. Becker, T. Köhler, A.C. Tiegel, S.R. Manmana, S. Wessel, and A. Honecker, PRB 96, 060403(R) (2017).

Conclusions & Outlook

Tensor Network methods very flexible and powerful tools:

- Basic idea: ,data compression' •
- Ground states, phase diagrams, finite-T, spectral functions, nonequilibrium

Quantity controling the "quality" of MPS: Entanglement

$$S = -\sum_{i} w_j^2 \log w_j^2$$

Frontier of today's research: how to deal with the entanglement?