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Review of ergodicity and its breaking in isolated quantum systems J
Weak ergodicity breaking J
Commutant algebras )
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Ergodicity in Isolated Quantum Systems

@ A quantum Hamiltonian is said to be ergodic if any initial state |¢)(0))
evolves into a “thermal” state |¢(t)) = e~ |¢)(0))

@ Reduced density matrix of a thermal state is the Gibbs density matrix
of the subsystem

pP= W)> <1/}’ y PA= TI'B (p)7 PA ~ eiﬁHlA

B
el —L=16
@ —L=14
0 L=12
10 —L=10
—~L=8
—Linear fit

@ Entanglement quantified by the von Neumann entropy
S =-Tra(palogpa)
@ Local information gets scrambled throughout the system
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Eigenstate Thermalization Hypothesis (ETH)

A fundamental principle governing the thermalization of initial states
in a quantum system

Eigenstate Thermalization:! Eigenstates |E,) in the middle of the
spectrum are thermal, entanglement entropy obeys a volume law
S~logD~1L

Strong ETH: ALL eigenstates at finite energy
density satisfy ETH after resolving symmetries
Hamiltonians without an extensive number of -

conserved quantities believed to satisfy strong

ETH ETH
e Ergodicity breaking (violation of ETH) was be-
lieved to only occur in two types of systems -
e Integrable
e Many-Body Localized GS-like
—GS

. Srednicki Phys. Rev. E 50, 888 (1994)
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Outstanding Questions for Eigenstates in Non-Integrable

Systems

@ Can ETH be violated in some states in
the absence of an extensive number of
conserved quantities? Solvable

@ A paradigm of ergodicity breaking be-
yond integrability and MBL?

@ Issues: no good numerical methods to
address this problem

@ Recent analytical progress has identi- ..
fied two new types of “weak” ergodic-

ity breaking?

Int bl
e Quantum Many-Body Scars ntegrable ..

o Hilbert Space Fragmentation

Non-Integrable
(ETH)

I
Finite-dimensional ;'.

2M.Serbyn, D.A.Abanin, Z.Papic (2020); SM, B.A.Bernevig, N.Regnault (2021) 5/28



Weak Ergodicity Breaking: Quantum Many Body Scars




Quantum Many-Body Scars

@ Non-integrable models with quasiparticle towers of eigenstates deep in
the spectrum have been discovered?

o AKLT spin chain:* P =7, (—1)/(S;")? states with N quasiparticles
dispersing with k = 7 are exact eigenstates for finite system sizes L!

G) B s s g e s s S T anoany
20 =P[6) 030006 @Y @-ooroo-oo
[Se) = P*16) ool ¢ @»@ &) Go~co

sy=Pilc)=|F) @& & ¢ @ @ & & & &

3SM, B.A.Bernevig, N.Regnault (2021)
4SM, S. Rachel, B. A. Bernevig, N. Regnault (2017)
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Quantum Many-Body Scars

@ States have entanglement entropy S ~ log L = Violation of Strong
ETH!

e Equally spaced tower: leads to exact revivals from simple initial states®

1.0 n N

0.8 —£=0.1)

i’ =06 — ¢ =025)

Solvable ) _
. ETH K 04 ‘5,%,@
—|¢=25.0)
0.2 — |000011010010)
- 0.0 N; 7
0.0 2.0 4.0 6.0 8.0

}GS-like
—GS

4

5T. ladecola, M. Schecter (2019)
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Connections to Recent Experiments: PXP Model

@ Rydberg experiment® modelled by the constrained Hamiltonian

L
Hpxp = ZPﬁ_l X, P;’_H = |o ° o) <o o o| + h.c.

n=1

o Initial charge densi'éy wave configuration |Zp) = o e o --- e o e)
shows anomalous dynamics’

o QMBS understood as a consequence of approximately disconnected
low-entanglement subspace span, {e~HPxet |Z,) 18

6Bernien et al. Nature 551, 579-584 (2017)

7C.J. Turner et al. Nature Physics 14, 745-749 (2018)
8 M. Serbyn, D.A.Abanin, Z. Papic (2020) 9/28




Weak Ergodicity Breaking: Hilbert Space Fragmentation




Hilbert Space Fragmentation

@ What happens to ETH in constrained systems? Hard constraints
typically arise in effective Hamiltonians

@ Hilbert space fractures into exponentially many dynamically
disconnected Krylov subspaces, |R;) being product states

K
H=EDK(H,IR)), K(H,IR))= span, {e_th \R)}
i=1

o Different subspaces are not
distinguished by obvious A Non-Integrable
symmetry quantum numbers, A (ETH)

can show vastly different

. Integrable Y
properties!® 9
@ Violation of conventional ETH
due to block-diagonal structure -
after resolving known symmetries Finite-dimensional >

9SM, A. Prem, R. Nandkishore, N. Regnault, B.A. Bernevig (2019)
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Dipole-Moment Conserving Models

e Fragmentation generically occurs in one dimensional systems
conserving dipole moment (ijsz with OBC)lO’ll

@ Example: spin-1 dipole conserving Hamiltonian that implements the
following rules (H =3 _; (Sj__l(SjJr)zsjj_1 + h.c.))
4+ —-0) < [0+—), [0—+) < |-+0)
4+ —+) < [04+0), |-+ —)«[0-0)

e Exponentially many one-dimensional subspaces (“frozen” eigenstates)
+4+—-—=4++—-=), 0++0++---0++)

@ Subspaces with non-local conserved quantities, e.g. a product state
|0---0+0---0) can only evolve to states with “string-order”
0---0+0---0—0---0+---0)

10p, Sala, T. Rakovszky, R. Verresen, M. Knap, F. Pollmann (2019)
11y, Khemani, M. Hermele, R. Nandkishore (2019)
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Violation of conventional ETH

Initial product states never thermalize w.r.t. the full Hilbert space!?13
Eigenstate entanglement entropy within in the blocks satisfy S ~ log D
(S~ Lif D~exp(L),S~logLif D~ L%)

Krylov-restricted ETH principle: ETH or its absence holds only
within each subspace K (H, |R;))*

=« = Infinite-temperature
== a = Late-time

—40 —-30 —-20 -10 0 10 20 30 40
P

12P,Sa|a, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019)
13V.Khemani, M.Hermele, R.Nandkishore (2019)
1485M, A.Prem, R.Nandkishore, N.Regnault, B.A.Bernevig (2019)
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Dynamically Disconnected Subspaces

@ These phenomena of weak ergodicity breaking are essentially the
existence of unexpected “dynamically disconnected subspaces” in the
Hilbert space

Thermal

QMBS

@ Basis? Product state basis = “classical” phenomenon (most of the
fragmentation literature)

@ Dynamically disconnected subspaces always exist in the presence of
symmetries (usual quantum number sectors)

How do these sectors differ from symmetry sectors?

14 /28



Symmetries in Quantum Many-Body Systems

@ Conventional symmetries: usually on-site unitary representations of a
group G
el*? if G = U(1)
Ulg) = i(g)ei(g)®---@i(g), eg d(g)=4
e'*? if G =5U(2)

o Conserved quantities are typically sums of local operators, e.g. total
charge, number of domain walls, etc.

@ Issue: These conserved quantities do not explain dynamically
disconnected subspaces in QMBS or fragmentation

@ Allow arbitrary commuting operators to be conserved quantities —>
every finite-dimensional Hamiltonian is fragmented?!

[H,|En) (En]] =0 == exponentially many conserved quantities

What is an appropriate definition of a conserved quantity?!®

15Gimilar problems exist in defining integrability in finite-dimensional systems: E.A.Yuzbashyan, B.S.Shastry (2013)
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Commutant Algebras




Commutant algebras

o Key observation: Same fragmentation structure appears for entire
classes of Hamiltonians {}_; Jih; 1}

@ Natural to look for operators that commute with this entire family.

[0, Zthj,jH] =0 v{J}.

J

o Commutant Algebra C: algebra of operators 0 (not necessarily local)
such that [hjj11,0] =0 Vj

a151 +a252 € C for any ai,ap € C

0) eC, 0,cC =— SO A
! 2 { 0:0,,0,0; € C

e C commutes with the full "bond algebra” A generated by {h; j;1}

(A= ({hjj+1})).
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Commutant Algebras

@ A and C are unital {-closed (von B
Neumann) algebras

@ They are centralizers of each
other in the algebra of all
operators on A (Double
commutant theorem)

@ Representation theory: There exists a basis in which operators /HA eA
and he € C have the matrix representations

ha=EP Mp, @14,), he =P (1p, ® Ng,)
A A

e {D,} and {d\}: dimensions of irreducible representations of .4 and C.

@ Alternately: Basis in which all elements of A are maximally block
diagonal

18/28



Dynamically Disconnected Subspaces

@ Hamiltonian H in A, block i
diagonal form defines .. d,
dynamically disconnected \\

subspaces. [ |

@ For each \: d) number of .. d,
degenerate Dy-dimensional

Krylov subspaces. |

@ Number of Krylov subspaces

K =3, dy, bounded using DD d,
dim(C) = 32, &3

1
5 log(dim(C)) < log K < log(dim(C)) - = -
log(dim (C)) Example
~ 0(1) Discrete Global Symmetry
~logL Continuous Global Symmetry
~ L Fragmentation
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Simple Examples: Abelian C

@ AbelianC = d)\, =1, K =dim(C)
@ Generic Hamiltonians Zj-/jthH with no symmetries
[hjj+1,0] =0 = C={1}, K=dim(C) = 1.
e Example: Ising models H = ZJ 1 [iXiXj41 + hjZj], solve for
[XjXj+1,0] = 0 and [Z;, 0] = 0

C=span{l,[[ Z} =C[Z2], K =dim(C) =2.

o Example: Spin-3 XX models H = ZJL 1 [i(XiXje1 + Y Yj1) + hiZj],
solve for [X;Xj11 + YjYjt1, O] =0and [Z; 5] =0
c:<<2>>:span{n,2( 2P, (D, K=dim(C) = L+1
Z=y,2
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Simple Examples: Non-Abelian C

@ Example: spin—% Heisenberg model

H=Y,4 5 S A= (S S1) =CIS]

[S;- S+, X1 =0, [5;-S41, Y] =0, [5;- 51,21 =0V
C=(X,V,Z) =span, 5, {(X)*(YV)*(2)"} = U(su(2))

@ Block-diagonal form (Schur-Weyl duality):
0 < A< L/2: S? eigenvalues, dy = 2\ + 1: irreps of s5u(2)
D, irreps of S;

© Double Commutant Theorem: Any SU(2)-symmetric operator is
within the algebra A = ({S; - Sj+1})).

In these simple cases, the full commutant is generated by “conventional”
conserved quantities, but not always the case

158M, 0. I. Motrunich (2021)
21/28



Hilbert space fragmentation




“Classical” fragmentation: t — J, model

o Consider the t — J, Hamiltonian: hopping with two species of particles

[10) < [01), 10y < [0))

Hey =3 (—tijs1 2 (Ei,UEJTp + h-C-) + S 5415757)
J o€t}

~ T .
C.I?O- = CJ7U (1 - (':i,foCJv_U

@ Has two U(1) symmetries NT = > NJ-T and NV = > NJ-i

@ Full pattern of spins (1 or |) preserved in one dimension with OBC

0140 410) <4 0110 110)

@ Fragmentation in the product state basis, number of Krylov subspaces
K=Yi,2=241-1
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“Classical” fragmentation: t — J, model

@ Local operators NjT and Nf satisfy the relations

(i1, Nf NPT =0, [y, NN LT =0, a8 € {14}

@ The full commutant algebra C can be explicitly constructed,
dim(C) = 251 — 1 ~ exp(L)

01020 _ E a1 NO2 . N[Ok .
N B AGI Aéé o AGk ;g et}
J1<jp<-<jk

@ Most of these are functionally independent from the conventional
conserved quantities NT and N¥ = new dynamically disconnected
subspaces

@ Similar construction works for dipole-conserving models, exact results
in some cases (e.g. dim(C) ~ (1 + v/2)" for range-3 spin-1 model)

@ Classical fragmentation: All operators in C are diagonal in the product

state basis
24/28



“Quantum” fragmentation: Spin-1 biquadratic model

o Disordered SU(3)-symmetric spin-1 “ferromagnetic” biquadratic model
H= Z}:l Ji(5j - Sj+1) ground state degeneracy grows exponentially
with L = hidden symmetries

@ Bond algebra A = <(§J . §j+1)> is the Temperley-Lieb Algebra
TLi(q = 25%)

e Commutant C can be explicitly constructed,'® not generated by local
operators, dim(C) ~ exp(L)

(S5 Sj1)% (M), +(M$)j1] = 0, [(S;- Sie1)?, (MS);(M7)j41] = O,

QOO __ ary, Y. . Qe ,
MBIBZ"'Bk - Z (Mﬁl )Jl(Mﬁz )12 (Mﬁk )Jk'
J1<jp<-<Jk
@ Quantum fragmentation: Block-diagonal structure of the Hamiltonian
understood in the spin-1 singlet basis, not the product state basis

16N. Read, H. Saleur (2007)
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“Quantum” fragmentation: Spin-1 biquadratic model

@ Non-abelian C leads to large
degeneracies in the spectrum

Degeneracy
5

@ Violates conventional ETH if
only the SU(3) symmetry is
resolved

=
o

=
)
>

0 2 2 6 8 10 12 14 16
Energy

@ Hamiltonian restricted to a Krylov subspace is the XXZ model with
SU(2)q symmetry

-1 -1 -1

_l’_ —
> [ 4 ¥ + ST 220 4 S (2 2)
J=1

e Satisfies Krylov-Restricted ETH’ (equivalent to resolving non-local
conserved quantities)

17SM, A. Prem, R. Nandkishore, N. Regnault, B. A. Bernevig (2019)
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Application: Mazur bounds

@ Autocorrelation functions of local operators can be bounded using the
“conserved quantities” {Q,} of the system

wl [ (A0)@IA ey Loya
Jim e awa©) = SAGIOSE (48) = miATe)

(0%
@ “Measure” of operator spreading, expected to decay to 0 as L — oo

(e.g., as ~ 1/L for U(1)-symmetric systems)
@ Fragmentation associated with

anomalous saturation of ;’206 —
autocorrelation functions!® T e
.04

@ Puzzles resolved if all the 1T I _
operators in the commutant are = |a)
. . 2 0fh= 0! 100 10!
incorporated in the Mazur time ¢
bound!®

18P.Sa|a, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019)

19§M, 0. I. Motrunich (2021)
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o Commutant algebras natural language
for dynamically disconnected subspaces,
gives a concrete definition for
fragmentation dim(C) ~ exp(L)

@ Conventional symmetries: C generated
by conventional conserved quantities,
dim(C) ~ O(1) or dim(C) ~ poly(L)

@ “Classical” fragmentation in the product
state basis v/s “Quantum”
fragmentation in an entangled basis

@ Systematic consideration explains
numerical observations of
autocorrelation functions/operator
spreading, leads to new Mazur bounds

Details in:
SM, O. |. Motrunich, arXiv: 2108.10324
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