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▶ Phases in open systems
▶ Matrix product density operators (MPDO)
▶ Renormalization fixed point MPDO
▶ Results:

▶ Examples for RFP MPDO
▶ Some of the examples are in the trivial phase
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Phases in open systems: circuit of channels

ρ −→ ρ

ρ0 → ρ1 if with a shallow circuit of local channels

ρ1 =
ρ0



Circuit of channels: consequences

▶ ρ→ (Id/d)⊗N for all ρ:
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So far...

▶ Phase: shallow circuit of local channels

ρ =

▶ What are the MPDOs in the trivial phase?
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So far...

▶ RFP MPDO: ∃ CPTP maps T , S:

S

= and =

T

▶ What are the RFP MPDOs in the trivial phase?
▶ Prepare w/ shallow circuit of local channels

ρ =



Renormalization fixed point MPDO: Examples

▶ Boundaries of topological order

▶ String-net: Unitary fusion category
▶ MPO tensors: Sahinoglu, et. al., 1409.2150
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▶ S and T are CP, but not TP
▶ The MPO is not ZCL
▶ After normalization, MPO is ZCL, and S,T are CPTP



So far...

▶ RFP MPDO from string-nets
▶ Which ones are in the trivial phase?
▶ Which ones can be prepared w/ shallow circuit of local

channels?

ρ =
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Creating RFP MPDOs with local channels
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On the structure of the MPO tensor
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The gluing map (1D vacuum)

The gluing map:

T (X ⊗ Y ) ≈
∑

a

da
d2 ·

a a a a
X Y

The way it works:

∑
a

da
d2 ·

a a a a =



Conclusion

▶ Phase classification for mixed state
▶ Renormalization fixed point MPDO
▶ Examples from string-net
▶ A subset of them is in the trivial phase
▶ Conjecture: MPDO from Fibonacci is not in the trivial phase


