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Outline:

* Bound states in a ferromagnet

* Methods used: thermal DMRG and time-dependent thermal DMRG
* Spin-1/2 FM chain

e Spin-1 FM chain

* Conclusions



Bound state: an well documented feature ...

* Already pointed out by Hans Bethe (Journal Z. Physik 71, 205 (1931)),
* Was again revisited with spin wave analysis by F. Dyson (Phys. Rev. 102, 1217(1956))
* A complete bound state computation was done by Wortis (Phys. Rev. 132, 85 (1963))

* Early attempts to observe the bound state by Date, Motokawa (PRL 16,1111(1966)), Torrance and

Tinkham (Phys.Rev. 187, 595 (1969)) — but they were indirect detection by studying resonances
near k=0.

* Our proposal is to perform the experiment at finite temperature to observe the bound state
directly.

* Inelastic Neutron Scattering experiments always observe single spin-flip processes, but are
conducted at very low temperatures.

* So finite temperature populates the spin-wave states on which an additional spin-flip results in
bound state.



Method

* We start from MPDO ansatz to represent the thermal ensemble where one denotes physical and
auxillary degrees of freedom.
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* From imaginary time evolution Suzuki-Trotter operators, the thermal ensemble is obtained.
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A Non exhaustive list of references
Pp—or F. Verstraete et.al. PRL 93, 207204 (2004)
T. Barthel et. al. PRB 79, 245101 (2009)

TN diagram showing one iteration of a second order Suzuki Trotter time-evolution scheme



Computing the observables ...

* By simply taking the trace over the auxillary indices (dotted legs ) , one computes the
observables.
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Thermodynamics of spin-1/2 Ferromagnet

E(T)

*) Red dashed line represents the
curve due to spin-wave theory.

*) Blue dotted line represents the
curve due to modified spin-wave
theory (Takahashi, PTP supplement
87, 233(1986)).

*) MonteCarlo simulations using
ALPS package.
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Finite temperature DSF

Dynamical structure factor is fourier transform of time-dependent real space
correlations

C (i, s Bst) = Tr [p5S7 (j: 1) (i: 0)

Where, v, € {z,+, —}

Using the cyclicity of Trace and using the Heisenberg picture, one finds it is equivalent to :

C70(i, s B) = Tr | pg §7()S* (i)e MM py 1"

2

So one computes the thermal density matrix upto half the inverse temperature instead of full
computation, and one needs then real time evolution
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Spin-1/2 FM chain

(2) pI=16
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(b) pJ=8
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Spin-1/2 FM chain

w/J

J(1 — cosk) %(1 — cos k) —J(1 — cosk)

Spinwave dispersion De-excitation from spinwave to aligned state

Bound state dispersion



Characterizing the bound state

Maximum distance between the bound state and the spinwave excitationisatk = m.

Finite temperature results in more spectral weights to the bound state but at the same time there
is thermal broadening of the mode too.

We compared the section cuts at k = m and decided the lower bound of the temperature when
the bound state spectral weight is 5% of the total spectral weight in the DSF section cut.

Therefore, the best possibility to observe it is between J/12 < T <J/3.



Characterizing the bound state (contd.)

* Varying the temperature shows a dependency of spectral weights of bound

state as T'3/2.
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In presence of magnetic field ..

* The model loses its isotropy.

H=-JY S;-Siz1—hY 57 (J =1)

e Spectral weights of the bound state is present in the transverse component
of the DSF.

* The spectral weights in the longitudinal component DSF is mostly
concentrated atk = 0, w = 0.



Increasing magnetic field

ST (k, w) component

(b) BJ=8,h=0.1J (c) BJ=12,h=0.1J (d)B=16,h=0.1J

Increasing temperature
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Spin-1 FM chain

 Similar to spin-1/2 FM chain, we also find the bound
states in the finite-temperature DSF.

* In the section cut, one can compare the bound state
spectral peak sizes as compared to main spin-wave
excitation of spin-1/2 and spin-1 FM chain.
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Quadrupolar structure factor (DQSF)

* In order to access the two magnon spectrum (at OK) of spin-1 FM
chain, quadrupolar structure factor should be computed.

* There are 3 components — i) Longitudinal, ii) Transverse , and iii)
Pairing component. They are the same in an isotropic model.

* So, we focus only on Pairing component.
. 1 . 2 4o 2
Cqalisjit) = 5 [<(S (7:1))" (ST (4)) >+h-6o}

* Fourier transform of this component leads to the Quadrupolar
Structure Factor.



Comparison between zero and finite temperature

10
DQSF plot for obtaining the two-
magnon spectrum



In order to understand the resonance ...

* Consider n.n. biquadratic interactions along with the existing Heisenberg interactions

HBLBQ — JZCOS HSZ y Sf,;_|_1 -+ Sin Q(Sz ¥ S7;_|_1)2
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Two magnon spectrum of BLBQ chain in FM phase
M (a) 6=0.6m

(b) 0=0.75x
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Two magnon spectrum of BLBQ chain in FM phase
(b) 6=0.75n

Just considering spin-
waves on ferromagnets




Two magnon spectrum of BLBQ chain in FM phase
N (2) 0=0.6m (b) 0=0.75m

Bound states (stars) and
anti-bound states
(crosses) using Wortis's
method (1963)




BLBQ chain’s finite temperature simulations

(b) 0=0.75n
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 Just for completeness,
note the effect of finite
temperature on the BLBQ
chain.

* We compare the effect of
biguadratic interaction on
the the thermal DSF. The

finite temperature . (d)0=—-0.8n
ensemble is at T = J/10.
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In real materials ...

e Often, in real materials that are modelled after spin-1 Heisenberg
model also include easy axis single-ion anisotropy interaction.

H=-JY Si-S8i1—DY (5)° (J=1,D>0)



The three components of the
DQSF are no longer same. We
focus on pairing component
which captures the spectral
weight on the bound states.
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Zero temperature results
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Finite temperature effects
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Conclusion

* Upon exploring the realistic scenarios of ferromagnetic spin chains, we propose that the best
possibility to observe the bound state is in spin-1/2 chain compound.

* The early Neutron Scattering experiments were conducted at low temperatures infact,
experiment at T=J/16 had been conducted but our numerical simulations indicate that if an
experiment is conducted above T >J/12, the bound state could possibly be detected.
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