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Motivation: Quantum Phase Recognition
▪ Experimentally study applications and performance of quantum neural network.
▪ In particular: Scenarios in which processed data is intrinsically quantum (no classical analogue, circumvents data 

loading bottleneck)

▪ Possible use in: 
▪ Quantum auto-encoding [5]
▪ Certification of Hamiltonian dynamics [6]
▪ Quantum error correction [4]
▪ Quantum phase recognition [4]
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Quantum speedup for 
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[3] Arute et al., Nature 574 (2019), [4] Cong et al., Nat. Phys (2019), 
[5] Romero et al., QST (2017) [6] Wiebe et al., PRL (2017)

States output by quantum hardware are 
becoming too complex to be analyzed by 
classical means [3]

[1] Havlicek et al., Nature 567 (2019), [2] Lienhard et al. APS Phys. (2020) 



Overview

• Quantum Phase Recognition

• Hamiltonian with a symmetry protected topological phase

• Identifying quantum states: direct measurement vs QCNN

• Quantum Convolutional Neural Networks
• Inspiration behind the algorithm: classical CNN

• Advantages and physical interpretation

• Superconducting Quantum Processor

• Experimental results
• Characterization of the prepared ground state

• Performance of the QCNN

• Conclusions and outlook



The problem
Quantum Phase Recognition



Quantum Phase Recognition with a QCNN

Quantum Face Recognition
▪ Task: Decide for a prepared quantum state 𝜌0 if it exhibits 

symmetry-protected topological (SPT) order [1, 2]. 
▪ Model system: Ground states of the Cluster-Ising Hamiltonian

▪ Signature of SPT phase: Finite string order parameter [3]
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[3] Pollmann et al., PRB (2012), [4] Cong et al., Nat. Phys (2019)



Theoretical background – Hamiltonian
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[1] Pollmann et al., PRB (2012), 
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• Has an SPT phase under  ℤ2 × ℤ2
symmetry
• 𝑋1𝑋3
• 𝑋2 - Not exact due to boundary terms!

• Characterized by String Order Parameter 
• 𝑆 = 𝑍1𝑋2𝑍3

Theoretical background – Hamiltonian
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Theoretical background – SPT phase
Limits:
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Quantum Phase Recognition with a QCNN

Quantum Face Recognition
▪ Task: Decide for a prepared quantum state 𝜌0 if it exhibits 

symmetry-protected topological (SPT) order [1, 2]. 
▪ Model system: Ground states of the Cluster-Ising Hamiltonian

▪ Signature of SPT phase: Finite string order parameter [3]
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Questions
▪ Can we detect SPT phase by processing 𝜌0 with a quantum 

algorithm rather than by averaging 〈𝑆〉?
▪ Possible advantages: Improve sampling efficiency close to phase 

boundary and error tolerance capability [4]

[1] Smith et al., arxiv:1910.05351, [2] Azses et al., PRL (2020)

[3] Pollmann et al., PRB (2012), [4] Cong et al., Nat. Phys (2019)



The algorithm
Quantum Convolutional Neural 

Networks



Variational state preparation circuit

State preparation ansatz: C. Bravo-Prieto, et. al, arXiv:2002.06210 (2020)

Ansatz
▪ Hardware-efficient ansatz alternating between layers of CZ 

gates and single qubit rotations
▪ Use single layer d=1 in experiment
▪ 19 variational parameters
▪ Optimize variational parameters offline on classical computer 

by minimizing energy Ԧ𝜃 𝐻 Ԧ𝜃 with L-BFGS B
▪ Fidelity w.r.t. exact GS exceeds 82% for all states

| Ԧ𝜃〉

Step 1: Prepare (approximate) ground states of 𝑯 on quantum processor 

|0〉

𝐻(ℎ1, ℎ2)



Classical convolutional neural networks

Images from A Comprehensive Guide to Convolutional Neural Networks, Sumit Saha

Convolutional layer Pooling layer Fully connected

Example: Image recognition

Data is processed using trainable weights 𝑤 on the input data 𝑥
𝑦𝑖,𝑗 = 𝑤𝑜𝑥𝑖,𝑗 +𝑤1𝑥𝑖+1,𝑗 + …+ 𝑤8𝑥𝑖+2,𝑗+2

Reduces size of data to the most relevant features
(maximum, averaging,...)

All remaining data points are processed
simultaneously with trainable weights



Quantum CNN structure

“Convolution” with
quasilocal unitaries

“Pooling”: Measure and
apply controlled unitaries

“Fully connected”: Non-
local measurement

Quantum Convolutional Neural Networks, Cong et al., Nat. Phys. (2019)



Quantum Phase Recognition with a QCNN

Compare Cong et al., Nat. Phys. (2019)

Quantum Convolutional Neural 
Network

▪ Convolutional layer ideally 
maps cluster state onto 
ground state ⟩|00000

▪ Inspired by the multiscale 
entanglement renormalization 
ansatz (MERA)

Step 2: Measure 𝑺 or QCNN output from state preparation circuit



Theoretical understanding

Cong et al., Nat. Phys. (2019)

QCNN = Multiscale Entanglement Renormalization Ansatz (MERA) 
+ Quantum Error Tolerance (QET)

The QCNN output corresponds to measuring a multi-scale string order parameter of the form

𝑆𝑀 =

𝑗𝑘

𝜂𝑗𝑘
(1)
𝑆𝑗𝑘 + 

𝑗𝑘𝑙𝑚

𝜂𝑗𝑘𝑙𝑚
(2)

𝑆𝑗𝑘𝑆𝑙𝑚 +⋯

Herrmann, Masot-Llima et al. (2021)

▪ The number of terms grows double exponentially with the depth of the circuit
▪ For our experiment with 𝑁 = 7 and 𝑑 = 1 the QCNN measures a sum of 10 

different string order parameters
▪ All terms are measured simultaneously and cannot be constructed from a direct 

measurement of all qubits in a single local basis (X, Y or Z basis)

QET



Quantum Phase Recognition with a QCNN

Compare Cong et al., Nat. Phys. (2019)

Quantum Convolutional Neural Network

▪ Move Pooling and Fully Connected layers 
into classical sector (AND & XOR gates) to 
map sampled multibit string 𝒙 onto single 
output bit 𝑦 described by Boolean 
function 𝑓(𝑥).

▪ Capability to tolerate errors (depicted for 
X and Z errors)



Quantum Phase Recognition with a QCNN

The algorithm
▪ Variant of Quantum Convolutional Neural Network [4]
▪ Entangling gates in convolutional layer
▪ Pooling reduces the number of qubits while retaining 

characteristic features
▪ Fully-connected layer to map decision onto a single 

output qubit

[1] Smith et al., arxiv:1910.05351, [2] Azses et al., PRL (2020)

[3] Pollmann et al., PRB (2012), [4] Cong et al., Nat. Phys (2019)

Quantum Face Recognition
▪ Task: Decide for a prepared quantum state 𝜌0 if it exhibits 

symmetry-protected topological (SPT) order [1, 2]. 
▪ Model system: Ground states of the Cluster-Ising Hamiltonian

▪ Signature of SPT phase: Finite string order parameter [3]
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Questions
▪ Can we detect SPT phase by processing 𝜌0 with a quantum 

algorithm rather than by averaging 〈𝑆〉?
▪ Possible advantages: Improve sampling efficiency close to phase 

boundary and error tolerance capability [4]



Advantage: Sample complexity

Quantum Convolutional Neural Networks, Cong et al., Nat. Phys. (2019)
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N=45 chain
▪ Boundaries calculated with 

iDMRG simulation
▪ Color indicates phases according 

to analytical QCNNAnalytical QCNN

Theoretical proposal with a long chain:



Advantage: Sample complexity

Quantum Convolutional Neural Networks, Cong et al., Nat. Phys. (2019)
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The device
Superconducting Quantum Processor



The 7-Qubit Device (QCNN7)

Lifetime & Dephasing
T1: 10 – 35 𝜇s
T2*: 7 – 30 𝜇s

200 µm

1 mm

The 7-Qubit Device



Cryogenic setup for superconducting qubits

[1] Krinner et al., EPJ Quantum Technology (2018) 

40 K

4 K

1 K

0.1 K

10 mK

Suppress thermal excitations:
ℏ𝜔𝑔𝑒 ≪ 𝑘𝐵𝑇 (6 GHz ↔ 300 mK )
[1]



Single & Two Qubit Gate Control

Single Qubit Control:
• Via microwave pulses (50 ns length) [1] 
• Scale pulse amplitude linearly to 

implement arbitrary 𝑅𝑦(𝜃𝑖) rotation

[1] Motzoi et al. PRL 103, 110501 (2009)

• Required qubit connectivity is 1D linear chain
• Single qubit error from randomized benchmarking



Single & Two Qubit Gate Control

• Required qubit connectivity is 1D linear chain
• Single qubit error from randomized benchmarking
• Two qubit CZ error, from quantum process tomography

• Measured Chi-Matrices reused for simulation

Two Qubit CZ Gate:
• Implemented via dc-flux pulses bringing | ⟩11 ՞| ⟩20 [1, 2]
• Both qubits are fluxed to reach interaction frequency

• Flexible choice of interaction frequency

Energy

[1] Strauch et al. PRL 91, 167005 (2003), [2] DiCarlo et al. Nature 460, 240 (2009)



The outcome
Experimental results



Variational ground state preparation

𝐻(ℎ1, ℎ2)

Compile pulse sequence and run 
on quantum device



Characterization of exp. prepared Variational Ground 
states

[1] Fontana et al., arXiv:2011.08763 (2020)

▪ Examples for optimized set of rotation 
angles

▪ Exploit symmetries in state preparation 
circuit to mitigate effect of T1 decay [1]

▪ Paramagnetic (antiferromagnetic) phases 
exhibit finite local 〈𝑋𝑖〉 with identical 
(toggling) sign

▪ Cluster phase characterized by finite 𝐶𝑖 =
𝑍𝑖−1𝑋𝑖𝑍𝑖+1 correlations

▪ Measured phase diagram showing the 
measured 〈𝑆〉 in good agreement with 
theoretically expected one

▪ Reduced contrast due to finite state 
preparation fidelity



Comparison between Direct Sampling and QCNN 

Realizing Quantum Convolutional Neural Networks on a Superconducting Quantum 
Processor to Recognize Quantum Phases, Herrmann, Masot-Llima et al. (2021)

Direct Sampling QCNN 

Measure S across phase boundaries
▪ Output of QCNN and directly sampled SOP both follow the simulation (dashed line). 
▪ Reduced contrast compared  to ideal value (solid line) due to finite error probability
▪ QCNN achieves higher contrast due to error correcting capability



Conclusions and outlook



Achieved
▪ Built and operated a programmable 7Q quantum 

processor to demonstrate …
▪ … the preparation of a topological quantum 

phase
▪ … a Quantum Convolutional Neural Network to 

recognize topological order

Next steps Quantum Neural Networks
▪ Use larger system size to study sampling efficiency near 

phase boundary in dependence on depth of QCNN

▪ Explore trainability of parametrized QCNN

▪ Applications beyond quantum phase recognition (eg. in 
Quantum Error Correction)

arXiv:2109.05909

https://arxiv.org/abs/2109.05909
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