Sergi Masot Llima, BSC-Quantic, Benasque, 23/02/2022

Realizing Quantum Convolutional Neural Networks on a Superconducting Quantum Processor to Recognize Quantum Phases

H

IARPA

SWISS NATIONAL SCIENCE FOUNDATION

Barcelona Supercomputing

OUANTUMCAT

J. Herrmann,¹ S. M. Llima,^{1,4} A. Remm,¹ P. Zapletal,² N. A. McMahon,² C. Scarato,¹ F. Swiadek,¹ C. K. Andersen,¹ C. Hellings,¹ S. Krinner,¹ N. Lacroix,¹ S. Lazar,¹ M. Kerschbaum,¹ D. Zanuz,¹ G. J. Norris,¹ M. J. Hartmann,² A. Wallraff,^{1,3} and C. Eichler ¹

¹ Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland ² Eriodrich Alexander University Erlangen Nüreberg (EAU), Institute for The

²Friedrich-Alexander University Erlangen-Nürnberg (FAU), Institute for Theoretical Physics, Germany

³ Quantum Center, ETH Zurich, CH-8093 Zurich, Switzerland

⁴Quantic-CASE, Barcelona Supercomputing Center, Barcelona, Spain

Motivation: Quantum Phase Recognition

- Experimentally study applications and performance of quantum neural network.
- In particular: Scenarios in which processed data is intrinsically quantum (no classical analogue, circumvents data loading bottleneck)

	Classical Algorithm	Quantum Algorithm
Classical Data	CC Image or Speech Recognition	CQ Quantum speedup for classifying classical data [1]
Quantum Data	QC Using NN for qubit readout [2]	QQ This experiment

States output by quantum hardware are becoming too complex to be analyzed by classical means [3]

- Possible use in:
 - Quantum auto-encoding [5]
 - Certification of Hamiltonian dynamics [6]
 - Quantum error correction [4]
 - Quantum phase recognition [4]

Havlicek et al., Nature 567 (2019), [2] Lienhard et al. APS Phys. (2020)
 Arute et al., Nature 574 (2019), [4] Cong et al., Nat. Phys (2019),
 Romero et al., QST (2017) [6] Wiebe et al., PRL (2017)

- Quantum Phase Recognition
 - Hamiltonian with a symmetry protected topological phase
 - Identifying quantum states: direct measurement vs QCNN
- Quantum Convolutional Neural Networks
 - Inspiration behind the algorithm: classical CNN
 - Advantages and physical interpretation
- Superconducting Quantum Processor
- Experimental results
 - Characterization of the prepared ground state
 - Performance of the QCNN
- Conclusions and outlook

elline

The problem Quantum Phase Recognition

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Quantum Phase Recognition with a QCNN

Quantum Face Recognition

- Task: Decide for a prepared quantum state ρ₀ if it exhibits symmetry-protected topological (SPT) order [1, 2].
- Model system: Ground states of the Cluster-Ising Hamiltonian

$$H = -\sum_{i=1}^{N-2} Z_i X_{i+1} Z_{i+2} - h_1 \sum_{i=1}^{N} X_i - h_2 \sum_{i=1}^{N-1} X_i X_{i+1}$$

Signature of SPT phase: Finite string order parameter [3]

$$\langle S \rangle = \langle Z_1 X_2 X_4 \dots X_{N-3} X_{N-1} Z_N \rangle$$

Smith et al., arxiv:1910.05351, [2] Azses et al., *PRL* (2020)
 Pollmann et al., *PRB* (2012), [4] Cong et al., *Nat. Phys* (2019)

Theoretical background – Hamiltonian

$$\mathcal{H} = -\sum_{i=1}^{N-2} Z_i X_{i+1} Z_{i+2} - h_1 \sum_{i=1}^{N} X_i - h_2 \sum_{i=1}^{N-1} X_i X_{i+1}$$

- Has an symmetry protected topological phase under $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry
 - $\prod_{i \text{ odd}} X_i$
 - $\prod_{i even} X_i$
- Characterized by String Order Parameter [1]: $\langle S \rangle = \langle Z_1 X_2 X_4 \dots X_{N-3} X_{N-1} Z_N \rangle$

Theoretical background – Hamiltonian

$$\begin{aligned} \mathcal{H} &= -X_1 Z_2 - Z_1 X_2 Z_3 - Z_2 X_3 \\ &- \frac{h_1}{J} \left(X_1 + X_2 + X_3 \right) \\ &- \frac{h_2}{J} \left(X_1 X_2 + X_2 X_3 \right) \end{aligned}$$

- Has an SPT phase under $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry
 - X_1X_3
 - X₂ Not exact due to boundary terms!
- Characterized by String Order Parameter

• $\langle S \rangle = Z_1 X_2 Z_3$

Limits:

•
$$h_1 \rightarrow \infty$$
: $\mathcal{H} = -h_1 \sum_{i=1}^N X_i$

$$\left|\psi_{g}
ight
angle=\left|+++
ight
angle$$

•
$$h_1 = 0, h_2 = 0$$
: $\mathcal{H} = -\sum_{i=2}^{N-1} Z_{i-1} X_i Z_{i+1}$

$$\left|\psi_{g}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|+0+\right\rangle+\left|-1-\right\rangle
ight)$$
(cluster state)

•
$$h_2 \rightarrow -\infty$$
: $\mathcal{H} = -h_2 \sum_{i=1}^{N-1} X_i X_{i+1}$

$$|\psi_g
angle = |+-+
angle$$

Theoretical background – SPT phase

Quantum Phase Recognition with a QCNN

Quantum Face Recognition

- Task: Decide for a prepared quantum state ρ₀ if it exhibits symmetry-protected topological (SPT) order [1, 2].
- Model system: Ground states of the Cluster-Ising Hamiltonian

$$H = -\sum_{i=1}^{N-2} Z_i X_{i+1} Z_{i+2} - h_1 \sum_{i=1}^{N} X_i - h_2 \sum_{i=1}^{N-1} X_i X_{i+1}$$

Signature of SPT phase: Finite string order parameter [3]

$$\langle S \rangle = \langle Z_1 X_2 X_4 \dots X_{N-3} X_{N-1} Z_N \rangle$$

Questions

- Can we detect SPT phase by processing ρ₀ with a quantum algorithm rather than by averaging (S)?
- Possible advantages: Improve sampling efficiency close to phase boundary and error tolerance capability [4]

[1] Smith et al., arxiv:1910.05351, [2] Azses et al., *PRL* (2020)
[3] Pollmann et al., *PRB* (2012), [4] Cong et al., *Nat. Phys* (2019)

e gan a

The algorithm Quantum Convolutional Neural Networks

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Variational state preparation circuit

Step 1: Prepare (approximate) ground states of *H* on quantum processor

Ansatz

- Hardware-efficient ansatz alternating between layers of CZ gates and single qubit rotations
- Use single layer d=1 in experiment
- 19 variational parameters
- Optimize variational parameters offline on classical computer by minimizing energy $\langle \vec{\theta} | H | \vec{\theta} \rangle$ with L-BFGS B
- Fidelity w.r.t. exact GS exceeds 82% for all states

Classical convolutional neural networks

Data is processed using trainable weights w on the inpatedatæs size of data to the most relevant features

 $y_{i,j} = w_o x_{i,j} + w_1 x_{i+1,j} + \dots + w_8 x_{i+2,j+2}$ (maximum, averaging,...)

All remaining data points are processed simultaneously with trainable weights

Images from A Comprehensive Guide to Convolutional Neural Networks, Sumit Saha

Quantum CNN structure

quasilographynitenteslled unitaries

Quantum Convolutional Neural Networks, Cong et al., Nat. Phys. (2019)

Quantum Phase Recognition with a QCNN

Step 2: Measure $\langle S \rangle$ or QCNN output from state preparation circuit

Quantum Convolutional Neural Network

- Convolutional layer ideally maps cluster state onto ground state |00000>
- Inspired by the multiscale entanglement renormalization ansatz (MERA)

Compare Cong et al., Nat. Phys. (2019)

Theoretical understanding

The QCNN output corresponds to measuring a multi-scale string order parameter of the form

$$S_{M} = \sum_{jk} \eta_{jk}^{(1)} S_{jk} + \sum_{jklm} \eta_{jklm}^{(2)} S_{jk} S_{lm} + \cdots$$

- The number of terms grows double exponentially with the depth of the circuit
- For our experiment with N = 7 and d = 1 the QCNN measures a sum of 10 different string order parameters
- All terms are measured simultaneously and cannot be constructed from a direct measurement of all qubits in a single local basis (X, Y or Z basis)

Quantum Phase Recognition with a QCNN

um Convolutional Neural Network

ve Pooling and Fully Connected layers classical sector (AND & XOR gates) to classical multibit string \vec{x} onto single put bit y described by Boolean ction f(x).

ability to tolerate errors (depicted for nd Z errors)

Compare Cong et al., Nat. Phys. (2019)

Quantum Phase Recognition with a QCNN

Quantum Face Recognition

- Task: Decide for a prepared quantum state ρ₀ if it exhibits symmetry-protected topological (SPT) order [1, 2].
- Model system: Ground states of the Cluster-Ising Hamiltonian

$$H = -\sum_{i=1}^{N-2} Z_i X_{i+1} Z_{i+2} - h_1 \sum_{i=1}^{N} X_i - h_2 \sum_{i=1}^{N-1} X_i X_{i+1}$$

Signature of SPT phase: Finite string order parameter [3]

$$\langle S \rangle = \langle Z_1 X_2 X_4 \dots X_{N-3} X_{N-1} Z_N \rangle$$

Questions

- Can we detect SPT phase by processing ρ_0 with a quantum algorithm rather than by averaging $\langle S \rangle$?
- Possible advantages: Improve sampling efficiency close to phase boundary and error tolerance capability [4]

The algorithm

- Variant of Quantum Convolutional Neural Network [4]
- Entangling gates in convolutional layer
- Pooling reduces the number of qubits while retaining characteristic features
- Fully-connected layer to map decision onto a single output qubit

Advantage: Sample complexity

Quantum Convolutional Neural Networks, Cong et al., Nat. Phys. (2019)

Advantage: Sample complexity

Quantum Convolutional Neural Networks, Cong et al., Nat. Phys. (2019)

The device Superconducting Quantum Processor

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Cryogenic setup for superconducting qubits

[1] Krinner et al., EPJ Quantum Technology (2018)

Single & Two Qubit Gate Control

- Required qubit connectivity is 1D linear chain
- Single qubit error from randomized benchmarking

Single Qubit Control:

- Via microwave pulses (50 ns length) [1]
- Scale pulse amplitude linearly to implement arbitrary $R_{\gamma}(\theta_i)$ rotation

[1] Motzoi et al. PRL 103, 110501 (2009)

Single & Two Qubit Gate Control

- Required qubit connectivity is 1D linear chain
- Single qubit error from randomized benchmarking
- Two qubit CZ error, from quantum process tomography
 - Measured Chi-Matrices reused for simulation

- Implemented via dc-flux pulses bringing $|11\rangle\leftrightarrow|20\rangle$ [1, 2]
- Both qubits are fluxed to reach interaction frequency
 - Flexible choice of interaction frequency

(e) (i) a

The outcome Experimental results

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Variational ground state preparation

Compile pulse sequence and run on quantum device

Characterization of exp. prepared Variational Ground

- Examples for optimized set of rotation angles
- Exploit symmetries in state preparation circuit to mitigate effect of T1 decay [1]

- Paramagnetic (antiferromagnetic) phases exhibit finite local (X_i) with identical (toggling) sign
- Cluster phase characterized by finite $\langle C_i \rangle = \langle Z_{i-1}X_iZ_{i+1} \rangle$ correlations
- theoretically expected one Reduced contrast due to finite state preparation fidelity

measured $\langle S \rangle$ in good agreement with

[1] Fontana et al., arXiv:2011.08763 (2020)

Comparison between Direct Sampling and QCNN

Measure S across phase boundaries

- Output of QCNN and directly sampled SOP both follow the simulation (dashed line).
- Reduced contrast compared to ideal value (solid line) due to finite error probability
- QCNN achieves higher contrast due to error correcting capability

Realizing Quantum Convolutional Neural Networks on a Superconducting Quantum Processor to Recognize Quantum Phases, Herrmann, Masot-Llima et al. (2021)

Conclusions and outlook

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Achieved

- Built and operated a programmable 7Q quantum processor to demonstrate ...
 - ... the preparation of a topological quantum phase
 - ... a Quantum Convolutional Neural Network to recognize topological order

Next steps Quantum Neural Networks

- Use larger system size to study sampling efficiency near phase boundary in dependence on depth of QCNN
- Explore trainability of parametrized QCNN
- Applications beyond quantum phase recognition (eg. in Quantum Error Correction)

arXiv:2109.05909

Thank you for your attention!

