Momentum-resolved time evolution with matrix product states

Laurens Vanderstraeten University of Ghent Motivation: spectral functions in quantum matter

Momentum methods: quasiparticle ansatz

Time evolution in real space

Time evolution in momentum space

Results

Outlook

Maarten Van Damme & LV arXiv::2201.07314 Motivation: spectral functions in quantum matter

Momentum methods: quasiparticle ansatz

Time evolution in real space

Time evolution in momentum space

Results

Outlook

Maarten Van Damme & LV arXiv::2201.07314

Important probe for relating theory and experiment

$$S(q,\omega) = \int dt e^{i\omega t} \langle e^{iHt} O_{-q} e^{-iHt} O_{q} \rangle$$

with $O(q) = \frac{1}{\sqrt{N}} \sum_{n} e^{iqn} O_{n}$ \longrightarrow direct probe for low-lying excitations

Important probe for relating theory and experiment

$$S(q,\omega) = \int dt e^{i\omega t} \langle e^{iHt} O_{-q} e^{-iHt} O_{q} \rangle$$

with $O(q) = \frac{1}{\sqrt{N}} \sum_{n} e^{iqn} O_{n}$ \longrightarrow direct probe for low-lying excitations

Example: inelastic neutron scattering (INS) for magnetic materials

Han et al., Nature 492, 406 (2012)

Important probe for relating theory and experiment

$$\begin{split} S(q,\omega) &= \int dt e^{i\omega t} \langle e^{iHt} O_{-q} e^{-iHt} O_{q} \rangle \\ \text{with} \quad O(q) &= \frac{1}{\sqrt{N}} \sum_{n} e^{iqn} O_{n} \end{split} \quad \longrightarrow \text{ direct probe for low-lying excitations} \end{split}$$

Example: inelastic neutron scattering (INS) for magnetic materials

Mourigal et al. Nat. Phys. 9, 435 (2013)

Important probe for relating theory and experiment

$$S(q,\omega) = \int dt e^{i\omega t} \langle e^{iHt} O_{-q} e^{-iHt} O_{q} \rangle$$

with $O(q) = \frac{1}{\sqrt{N}} \sum_{n} e^{iqn} O_{n}$ \longrightarrow direct probe for low-lying excitations

Example: angle-resolved photo emission spectroscopy (ARPES) for electronic systems

Graf, et al, Phys. Rev. Lett. 98, 067004 (2007)

Important probe for relating theory and experiment

$$S(q,\omega) = \int dt e^{i\omega t} \langle e^{iHt} O_{-q} e^{-iHt} O_{q} \rangle$$

with $O(q) = \frac{1}{\sqrt{N}} \sum_{n} e^{iqn} O_{n}$ \longrightarrow direct probe for low-lying excitations

Numerical approaches

- exact diagonalization
- quantum Monte Carlo: analytic continuation
- matrix product states (MPS)

Important probe for relating theory and experiment

$$S(q,\omega) = \int dt e^{i\omega t} \langle e^{iHt} O_{-q} e^{-iHt} O_{q} \rangle$$

with $O(q) = \frac{1}{\sqrt{N}} \sum_{n} e^{iqn} O_{n}$ \longrightarrow direct probe for low-lying excitations

Numerical approaches

- exact diagonalization
- quantum Monte Carlo: analytic continuation
- matrix product states (MPS)
 - correction vector approach
 - Chebyshev expansion
 - real-time evolution

Important probe for relating theory and experiment

$$S(q,\omega) = \int dt e^{i\omega t} \langle e^{iHt} O_{-q} e^{-iHt} O_{q} \rangle$$

with $O(q) = \frac{1}{\sqrt{N}} \sum_{n} e^{iqn} O_{n}$ \longrightarrow direct probe for low-lying excitations

MPS methods all break translation symmetry

spectral function is a momentum-resolved quantity

use symmetries and associated quantum numbers in MPS simulations!

Overview

Motivation: spectral functions in quantum matter

Momentum methods: quasiparticle ansatz

Time evolution in real space

Time evolution in momentum space

Results

Outlook

The ground state is described by a uniform MPS

Isolated lines in the excitation spectrum can be captured by the momentum superposition of a local perturbation

Optimization of variational parameters

- orthogonal to the ground state
- energy as a function of momentum
- spectral weights

The ground state is described by a uniform MPS

Isolated lines in the excitation spectrum can be captured by the momentum superposition of a local perturbation

energy as a function of momentum

"Haldane gap" in SU(3) chain $\Delta = 0.0263$

0.5

0.0

Devos, LV, Verstraete arXiv: 2202.09279

[3 3 0]

- [210] - [300]

Confinement of spinons in quasi-1D Heisenberg magnet $(SrCo_2V_2O_8)$

inelastic neutron-scattering measurement of the spectral function

bound states of spinons

Bera, Lake, Essler, LV, Hubig, Schollwöck, Islam, Schneidewind, Quintero-Castro, PRB 96, 054423 (2017)

Confinement of spinons in quasi-1D Heisenberg magnet $(SrCo_2V_2O_8)$

$$H = \sum_{i} \epsilon \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} \right) + S_{i}^{z} S_{i+1}^{z} + h \sum_{i} (-1)^{i} S_{i}^{z}$$

Bera, Lake, Essler, LV, Hubig, Schollwöck, Islam, Schneidewind, Quintero-Castro, PRB 96, 054423 (2017)

Spin spectral function for the Heisenberg model on the triangular lattice (six-leg cylinder)

Drescher, LV, Moessner, Pollmann, in preparation

Spin spectral function for the Heisenberg model on the triangular lattice (six-leg cylinder)

time-dependent MPS methods

quasiparticle ansatz

Drescher, LV, Moessner, Pollmann, in preparation

Hole spectral function for the Hubbard model on the triangular lattice (three-leg cylinder)

Motivation: spectral functions in quantum matter

Momentum methods: quasiparticle ansatz

Time evolution in real space

Time evolution in momentum space

Results

Outlook

We compute the real-space and real-time correlator

$$S(n',t) = \langle \Psi_0 | O_{n+n'} e^{-i(H-E_0)t} O_n | \Psi_0 \rangle$$

We compute the real-space and real-time correlator

$$S(n',t) = \langle \Psi_0 | O_{n+n'} e^{-i(H-E_0)t} O_n | \Psi_0 \rangle$$

1. Start from the ground-state MPS and apply local operator

We compute the real-space and real-time correlator

$$S(n',t) = \langle \Psi_0 | O_{n+n'} e^{-i(H-E_0)t} O_n | \Psi_0 \rangle$$

1. Start from the ground-state MPS and apply local operator

2. Apply time-evolution operator and approximate as window-MPS

$$e^{-i(H-E_0)t}O_n|\Psi_0\rangle\approx -A X_1 \cdots X_N A$$

We compute the real-space and real-time correlator

$$S(n',t) = \langle \Psi_0 | O_{n+n'} e^{-i(H-E_0)t} O_n | \Psi_0 \rangle$$

1. Start from the ground-state MPS and apply local operator

2. Apply time-evolution operator and approximate as window-MPS

$$e^{-i(H-E_0)t}O_n|\Psi_0\rangle\approx -A X_1 \cdots X_N A$$

3. In each time step, perform sweep optimization for new window tensors

We compute the real-space and real-time correlator

$$S(n',t) = \langle \Psi_0 | O_{n+n'} e^{-i(H-E_0)t} O_n | \Psi_0 \rangle$$

1. Start from the ground-state MPS and apply local operator

- 2. Apply time-evolution operator and approximate as window-MPS
- 3. In each time step, perform variational optimization for new window tensors
- 4. Measure correlation functions

We compute the real-space and real-time correlator

$$S(n',t) = \langle \Psi_0 | O_{n+n'} e^{-i(H-E_0)t} O_n | \Psi_0 \rangle$$

1. Start from the ground-state MPS and apply local operator

- 2. Apply time-evolution operator and approximate as window-MPS
- 3. In each time step, perform variational optimization for new window tensors
- 4. Measure correlation functions
- 5. Fourier transform to momentum and frequency space

$$S(q,\omega) = \int dt e^{i\omega t} \sum_{n'} e^{iqn} S(n',t)$$

Example: spin-1 Heisenberg chain

Motivation: spectral functions in quantum matter

Momentum methods: quasiparticle ansatz

Time evolution in real space

Time evolution in momentum space

Results

Outlook

Spectral function is a momentum-resolved quantity!

$$\begin{split} S(q,\omega) &= \int dt \mathrm{e}^{i\omega t} \left\langle \mathrm{e}^{iHt} O_{-q} \mathrm{e}^{-iHt} O_{q} \right\rangle \\ &\propto \int dt \mathrm{e}^{i\omega t} \left\langle \Psi_{q}(0) | \Psi_{q}(t) \right\rangle \qquad \text{with} \quad |\Psi_{q}(t)\rangle = \mathrm{e}^{-i(H-E_{0})t} \sum_{n} \mathrm{e}^{iqn} O_{n} \left| \Psi_{0} \right\rangle \end{split}$$

Represent this time-evolved state as a "momentum-window MPS"

$$|\Psi_q(t)\rangle \approx \sum_n e^{iqn} - A - X_1 - X_N - A - A$$

Spectral function is a momentum-resolved quantity!

$$S(q,\omega) = \int dt e^{i\omega t} \langle e^{iHt} O_{-q} e^{-iHt} O_{q} \rangle$$

$$\propto \int dt e^{i\omega t} \langle \Psi_{q}(0) | \Psi_{q}(t) \rangle \quad \text{with} \quad |\Psi_{q}(t)\rangle = e^{-i(H-E_{0})t} \sum_{n} e^{iqn} O_{n} | \Psi_{0} \rangle$$

Represent this time-evolved state as a "momentum-window MPS"

$$|\Psi_q(t)\rangle \approx \sum_n e^{iqn} - A - X_1 - X_N - A - A$$

The time-evolution scheme is similar to the real-space version

- in each time step, apply time-evolution MPO variationally
- smart gauge fixing of the tensors
- extra linear scaling in window size due to momentum superposition

Example: spin-1 Heisenberg chain

For isolated lines in the spectrum, momentum-space window works for infinite times!

Example: spin-1 Heisenberg chain

For isolated lines in the spectrum, momentum-space window works for infinite times!

What about continua?

Example: spin-1 Heisenberg chain

For isolated lines in the spectrum, momentum-space window works for infinite times!

What about continua?

Example: spin-1 Heisenberg chain

For isolated lines in the spectrum, momentum-space window works for infinite times!

What about continua?

Motivation: spectral functions in quantum matter

Momentum methods: quasiparticle ansatz

Time evolution in real space

Time evolution in momentum space

Results

Outlook

Results

Benchmark: XXZ chain

Results

Application: J1-J2 Heisenberg model on 6-leg cylinder

 \rightarrow we compute the spectral lineshape for M point: $q = (\pi, 0)$

Dalla Piazza et al, Nat. Phys. 11, 62 (2015)

Results

Application: J1-J2 Heisenberg model on 6-leg cylinder

 \rightarrow we compute the spectral lineshape for M point: $q = (\pi, 0)$

Motivation: spectral functions in quantum matter

Momentum methods: quasiparticle ansatz

Time evolution in real space

Time evolution in momentum space

Results

Outlook

Outlook

Complementary methods

real-space: get full spectral function in one run

Outlook

Complementary methods

real-space: get full spectral function in one run

momentum space: fine-grained lineshapes

Complementary methods

real-space: get full spectral function in one run

momentum space: fine-grained lineshapes

Other approaches than time evolution?

correction vector or Chebyshev expansions

extrapolation techniques, e.g. linear prediction

Complementary methods

real-space: get full spectral function in one run

momentum space: fine-grained lineshapes

Other approaches than time evolution?

correction vector or Chebyshev expansions

extrapolation techniques, e.g. linear prediction

PEPS methods for spectral functions

Outlook

PEPS methods for spectral functions

Outlook

PEPS methods for spectral functions quasiparticle excitation ansatz Intensity (arb. units) 600 100 200 300 400 500 700 800 900 1000 (a) iPEPS D = 410 6 - 2.5 4 -- 2.0 2 . (*w* – *U*/2)/t - 1.5 0 -Э -2 - 1.0 -40.5 -6 0 ∟ M х S г M S Х M S Г X S $^{0}_{\Gamma}$ K M K' K M K' Г

Can we extend to momentum-resolved time evolution?

LV et al, Phys. Rev. B 99, 165121 (2019) Ponsioen et al, SciPost 12, 6 (2022) Chi et al, arXiv:2201.12121

Thank you!