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QFT

Describe IR of lattice models
Standard model
Generally easy

Free theories
Weekly interacting theories (qed, etc)

Sometimes hard -> numerics needed
Conceptual problems
(ex: how to define the lattice model, see Gertian’s talk)
Numerical problems
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Continuum limit - philosophically

Sequence of lattice models
Lattice spacing a is a UV-regulator
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Continuum limit - practically

Lattice model with couplings gi

Determine dependence on a lattice spacing a
→ gi(a)
(β-function: ∂gi(a))
All Length scales should scale appropriately with a
There must be a 2nd order phase transition at a = 0
(A CFT describes this point)
Determined by UV physics

Universal
can be calculated with perturbation theory for asymptotically free
theories
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QFT with second order phase transition?

UV criticality
IR criticality
2 CFT’s involved
Signature in entanglement entropy?
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λφ4 - Model

Action: ∫
d2x 1

2∂
µφ∂µφ+

1
2µ

2φ+
1
4λφ

4 .

Lattice model:∑
<i,j>

1
2(φi − φj)

2 +
1
4µ

2(φ2
i + φ2

j ) +
1
8λ(φ

4
i + φ4

j ) .

Global Z2 symmetry (φ → −φ)
Continuum limit for fixed α:

λ = a2 (1)
µ2 = a2α− 3a2A(a2α) (2)

φ(α) =φ(µ2, λ) ∝ φ3(µ2, λ)− 3
4π log(λ)φ(µ2, λ) (3)

Phase transition outside range of perturbative calculations
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λφ4 - Phase Diagram
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Usual practice

Fix the lattice spacing a
Determine critical point
Extrapolate

10.4

10.6

10.8

11

11.2

11.4

11.6

 0  0.02  0.04  0.06  0.08  0.1

λ/
µ c

2

λ

Schaich and Loinaz: cluster (2009)
Wozar and Wipf: with SLAC derivative (2012)
Bosetti et al.: worm (2015)
Bronzin et al.: worm with gradient flow (2018)
This work

Figure 8. Comparison of the continuum extrapolations of the critical coupling λ/µ2
c given in recent

Monte Carlo studies (Schaich and Loinaz [16], Wozar and Wipf [17], Bosetti et al. [20], and Bronzin

et al. [23]) and this work. At λ = 0, data points are horizontally shifted to ensure the visibility.

Note that the results by Wozar and Wipf cannot be compared at non-zero λ since they used the

SLAC derivative for scalar bosons, but, in the continuum limit (λ = 0), their results are consistent

with naively discretized ones within errors.

The dimensionless critical coupling was obtained as
[

λ

µ2
c

]

cont.

= 10.913(56) (5.1)

with sufficiently small error albeit the simplest form of the TRG is employed. The error

is the systematic one coming from the finite D effects. Our result shows a reasonable

consistency with the recent results obtained by different approaches.

The simplest TRG algorithm suffers from the growth of the systematic errors around

the criticality. Alternative coarse-graining procedures such as the tensor network renor-

malization (TNR) [26] and loop-TNR [27] might be useful to obtain more precise results.

These methods effectively work around the critical point and, in principle, are applicable

to any two dimensional model irrespective of the field contents. We could expect further

improvements for the accuracy of the critical coupling.

A Coarse-graining of tensor network including impurity tensors

We describe the coarse-graining algorithm for a tensor network with an impurity tensor

such as Z1 (K) in eq. (3.14), which is given with a fixed integer D for truncating the SVD.

Before discussing the nonuniform case, we first explain the coarse-graining of a uniform

network such as Z (K) in eq. (3.9) without impurity tensors. The graphical representation

– 14 –

2

2Daisuke Kadoh, Yoshinobu Kuramashi, Yoshifumi Nakamura, Ryo Sakai, Shinji
Takeda, and Yusuke Yoshimura, “Tensor network analysis of critical coupling in two
dimensional �4 theory,” JHEP 2019, 184 (2019).
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Double scaling

Two independent scaling properties (UV→continuum limit,
IR→critical point in QFT)
Two regulators introduced (UV→ a, IR→ χ/L)
Scaling properties summarized:

UV dimension IR dimension
λ 2 0

α− αc 0 1/ν = 1
L−1 , δ 1 1

l−1 = L−1/
√
λ , ∆ = δ/

√
λ 0 1

ξ -1 -1
φ 0 β = 1/8

φ3 − 3
4π log(λ)φ 0 β = 1/8
exp(S) − cuv

6 = −1
6 − cir

6 = − 1
12

Corrections to these properties must be taken into account
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Double collapse plots
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Critical point
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FIG. 2. RG flows in the space of tensors at criticality for four different values of λ using the Gilt-TNR algorithm at bond
dimension χ = 110. After a number of iterations that grows as λ gets close to zero, the same non-trivial fixed point, which is
characteristic of the underlying CFT, is observed. On the right-hand panel is depicted a heuristic picture of the RG flow, which
illustrates the fact that as we go to the continuum limit, the QFT UV fixed point, with a continuum of eigenvalues, starts being
visible.

defined in the previous section for coarse-grained tensors
corresponding to different linear system sizes. Five pairs
of panels are presented corresponding to five different
values of µ2

0: the one at criticality, and two on both sides
of the critical point.

We notice immediately the difference in fixed point
structures. First of all, the Gilt-TNR algorithm yields
the right trivial fixed points regardless of the initial pa-
rameters. These are characterized by a single or a pair
of dominant singular values, that correspond to either
the disordered phase or the symmetry broken phase, re-
spectively. The TRG algorithm yields non-universal fixed
points that depend on the initial parameters. While the
non-universal features that correspond to IR-irrelevant
information are seen to accumulate as we get closer to
the critical point, they are systematically removed by Gilt,
eventually leading to a collapse of the singular values,
producing the trivial fixed points.

Strikingly, Gilt-TNR yields a non-trivial fixed point
at critically that is characteristic of the underlying CFT.
Indeed, we observe that as the system size grows, the spec-
trum remains approximately identical for many iterations,
which is the hallmark of scale invariance. This cannot
be observed using TRG because of the accumulation of
short-range information that requires an unmanageable
growth of the bond dimension.

When going to the continuum limit by sending λ to zero,
the RG picture becomes more interesting. We naturally
have the same IR phases and fixed points, but a new UV
fixed point – corresponding to the short distance regime
of the continuum QFT – appears. Indeed, we now start
from an “ultra-UV” lattice theory, then flow close to the
QFT UV fixed point (the massless boson) as irrelevant
lattice artifacts decay, and then only reach the IR regime
of the QFT, which is independent of the continuum limit.
The lattice artifacts at the start of the RG are the same

no matter the initial value of λ, but only with very small
values of λ can the system flow close to the UV QFT
before the relevant perturbations (mass and coupling)
drive it away to the infrared (see fig. 2). The traces of
the UV QFT are clear in the tensor spectrum. As λ goes
to zero, we observe that the initial singular values are
systematically larger. We then observe a decay of the
first singular values that is more pronounced as λ is small,
sign that we are near a fixed point with a continuum of
eigenvalues, which is the case for the free boson. As we
argue in sec. VI, this makes going to the continuum limit
expensive.

V.B. Critical coupling in the continuum

Analysing the renormalization group flow of the model as
described above, we can determine the critical coupling
fc(λ) of the lattice theory for any values of λ. Since we
are interested in the continuum field theory, we probe
small values of λ, going as far as λ = 0.0025. We then
extrapolate to the continuum limit. The values of fc(λ)
for finite λ are shown in fig. 3.

The precision of our data points leaves little doubt

Method fcont.
c Year Ref.

Tensor network coarse-graining 10.913(56) 2019 [9]
Borel resummation 11.23(14) 2018 [6]
Renormalized Hamil. Trunc. 11.04(12) 2017 [5]
Matrix Product States 11.064(20) 2013 [7]
Monte Carlo 11.055(20) 2019 [15]
This work 11.0861(90) 2020

TABLE I. Comparison of several estimates of the critical cou-
pling constant fcont.

c in the continuum obtained using different
methods.

3

αc = 11, 09698(31)

3Clement Delcamp and Antoine Tilloy, “Computing the renormalization group flow of
two-dimensional �4 theory with tensor networks,” Phys. Rev. Research 2, 033278 (2020)
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Conclusion

We explored the double scaling properties of λφ4

Making use of this led to improved precision
The technique is method independent
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λφ4 - MPO

Action after lattice regularization:∑
<i,j>

1
2(φi − φj)

2 +
1
4µ

2(φ2
i + φ2

j ) +
1
8λ(φ

4
i + φ4

j ) .

Similar to Ising-like interaction, except for continuous variable φ

Ising-type partition function is made with GHZ-tensors on all sites
representing the local degrees of freedom:

T (i , j, k, p) = δijδjkδkp ,

and matrices with the Boltzmann weights for all the interactions:

t(i , j) = e−βH(i,j) .
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λφ4 - MPO

For λφ4 this becomes

T =

∫
dφ |φ〉 |φ〉 〈φ| 〈φ| ,

and

t =

∫
dφdφ′ |φ〉 〈φ| e

1
2 (φ−φ′)2+ 1

4µ
2(φ2+φ′2)+ 1

8λ(φ
4+φ′4) .

t has a discrete (quickly decreasing) spectrum:

t =
∑

i
|vi〉 〈vi |Λi

An efficient, arbitrarily precise MPO is thus:

MPO(i , j, k, p) =
∫

dφ 〈vi |φ〉 〈vj |φ〉 〈φ|vk〉 〈φ|vp〉
√

ΛiΛjΛkΛp .
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λφ4 - MPO

The approximations made are optimal (in a certain sense)

MPO can be efficiently made
Construction can be readily generalized
→ fermions, weird constraints on fields, topological terms,...
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Critical points

In the scaling regime, an RG transformation of scale s can be assumed to
have the following effect.

(g − gc) → sνg (g − gc)

〈O〉 → sβO 〈O〉
1/L → s/L (finite size calculations)
log(λi) → s log(λi) (finite MPS bond dimension calculations)
S → S + c

6 log(s)
Construct RG-invariant quantities to make a collapse
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Ising model example
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