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Outline
→ Monday 9-11 : Introduction

Probability
Hypothesis tests
Machine Learning

Tuesday 9-11 :  Parameter estimation
Confidence limits
Systematic uncertainties
Experimental sensitivity

Tuesday 15:30: Tutorial on parameter estimation

Almost everything is a subset of the University of London course:

http://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Some statistics books, papers, etc.
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.
Luca Lista, Statistical Methods for Data Analysis in Particle Physics, 
Springer, 2017.
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006
S. Brandt, Statistical and Computational Methods in Data Analysis, 
Springer, New York, 1998.
R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 
083C01 (2022); pdg.lbl.gov sections on probability, statistics, MC.
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Theory ↔ Statistics ↔ Experiment
Theory (model, hypothesis): Experiment (observation):

+ response of measurement
apparatus

= model prediction
data

Uncertainty enters
on many levels

→ quantify with
probability
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A quick review of probability

Frequentist (A = outcome of
repeatable observation)

Subjective (A = hypothesis)

Conditional probability:

A and B are independent iff:

I.e. if A, B independent, then
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Bayes’ theorem
Use definition of conditional probability and

→ (Bayes’ theorem)

If set of all outcomes S = ∪i Ai
with Ai disjoint, then law of total 
probability for P(B) says

so that Bayes’ theorem becomes

Bayes’ theorem holds regardless of how probability is 
interpreted (frequency, degree of belief...).

B ∩ Ai

Ai

B

S
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: x).

Probability = limiting frequency

Probabilities such as

P (string theory is true), 
P (0.117 < αs < 0.119), 
P (Biden wins in 2024),

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

Preferred theories (models, hypotheses, ...) are those  that 
predict a high probability for data “like” the data observed.
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Bayesian Statistics − general philosophy 
In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayes’ theorem has an “if-then” character:  If your prior
probabilities were π(H), then it says how these probabilities
should change in the light of the data.

No general prescription for priors (subjective!)
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Hypothesis, likelihood
Suppose the entire result of an experiment (set of 
measurements) is a collection of numbers x.  

A (simple) hypothesis is a rule that assigns a probability to each 
possible data outcome:

Note:
1)  For the likelihood we treat the data x as fixed.
2)  The likelihood function L(θ) is not a pdf for θ. 

Often we deal with a family of hypotheses labeled by one or
more undetermined parameters (a composite hypothesis):

=   the likelihood of H

=    the “likelihood function”
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Suppose a measurement produces data x; consider a hypothesis H0
we want to test and alternative H1

H0, H1 specify probability for x: P(x|H0), P(x|H1)

A test of H0 is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability
α, assuming H0 is correct,  to observe the data there, i.e.,

P(x ∈ w | H0) ≤ α

Need inequality if data are
discrete.

α is called the size or 
significance level of the test.

If x is observed in the 
critical region, reject H0.

Frequentist hypothesis tests 

data space Ω

critical region w
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Definition of a test (2)
But in general there are an infinite number of possible critical 
regions that give the same size α.

Use the alternative hypothesis H1 to motivate where to place the 
critical region.

Roughly speaking, place the critical region where there is a low 
probability (α) to be found if H0 is true, but high if H1 is true:
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Classification viewed as a statistical test
Suppose events come in two possible types:  

s (signal) and b (background)

For each event, test hypothesis that it is background, i.e., H0 = b.

Carry out test on many events, each is either of type s or b, i.e., 
here the hypothesis is the “true class label”, which varies randomly 
from event to event, so we can assign to it a frequentist probability.

Select events for which where H0 is rejected as “candidate events of 
type s”.  Equivalent Particle Physics terminology:

background efficiency

signal efficiency
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Example of a test for classification

Suppose we can measure for 
each event a quantity x, where

with 0 ≤ x ≤ 1.

For each event in a mixture of signal (s) and background (b) test

H0 : event is of type b

using a critical region W of the form:  W = {x : x ≤ xc}, where
xc is a constant that we choose to give a test with the desired size α.
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Classification example (2)

Suppose we want α = 10-4.     Require:

and therefore 

For this test (i.e. this critical region W), the power with respect 
to the signal hypothesis (s) is

Note:  the optimal size and power is a separate question that will 
depend on goals of the subsequent analysis.



G. Cowan / RHUL Physics TAE 2022 Benasque (online) / Lecture day 1 15

Classification example (3)

Suppose that the prior probabilities for an event to be of  
type s or b are:

πs = 0.001
πb = 0.999

The “purity” of the selected signal sample (events where b 
hypothesis rejected) is found using Bayes’ theorem:
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f(x|H) for a set of
observations x = (x1,...xn). 

We observe a single point in this space: xobs. 

How can we quantify the level of compatibility between the data 
and the predictions of H?

Decide what part of 
the data space represents 
equal or less compatibility  
with H than does the 
point xobs.  (Not unique!) 

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj



p-values
Express level of compatibility between data and hypothesis 
(sometimes ‘goodness-of-fit’) by giving the p-value for H:

= probability, under assumption of H, to observe data 
with equal or lesser compatibility with H relative to the 
data we got. 

= probability, under assumption of H, to observe data as      
discrepant with H as the data we got or more so.

Basic idea:  if there is only a very small probability to find data
with even worse (or equal) compatibility, then H is “disfavoured by 
the data”.

If the p-value is below a user-defined threshold α (e.g. 0.05) then H
is rejected (equivalent to hypothesis test of size α as seen earlier).
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p-value of H is not P(H)

where π(H) is the prior probability for H.

The p-value of H is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H
represents a repeatable observation). 

If we do define P(H), e.g., in Bayesian statistics as a degree of 
belief,  then we need to use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).
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The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

Events could be from signal process or from background –
we only count the total number.

Poisson model:  

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about s, e.g.,

test s = 0 (rejecting H0 ≈ “discovery of signal process”)

test all non-zero s (values not rejected =  confidence interval)

In both cases need to ask what is relevant alternative hypothesis.
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Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe nobs = 5.  

Should we claim evidence for a new discovery?  

Give p-value for hypothesis s = 0:
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Significance from p-value
Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

in ROOT:
p = 1 - TMath::Freq(Z)
Z = TMath::NormQuantile(1-p)

in python (scipy.stats):
p = 1 - norm.cdf(Z) = norm.sf(Z)
Z = norm.ppf(1-p)

Result Z is a “number of sigmas”.  Note this does not mean that 
the original data was Gaussian distributed.
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Poisson counting experiment: discovery significance

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended 
to cover, e.g., hidden 
systematics, plausibility signal 
model, compatibility of data with 
signal, “look-elsewhere effect” 
(~multiple testing), etc.

Equivalent significance for p = 1.7 × 10-4:  

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”)
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Particle Physics context for a hypothesis test

high pT
muons

high pT jets 
of hadrons

missing transverse energy

p p

G. Cowan / RHUL Physics

A simulated SUSY event (“signal”):
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Background events

This event from Standard 
Model ttbar production also
has high  pT jets and muons,
and some missing transverse
energy.

→ can easily mimic a 
signal event.

G. Cowan / RHUL Physics
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Classification of proton-proton collisions
Proton-proton collisions can be considered to come in two classes:

signal (the kind of event we’re looking for, y = 1)
background (the kind that mimics signal, y = 0)

For each collision (event), we measure a collection of features:
x1 = energy of muon x4 = missing transverse energy
x2 = angle between jets x5 = invariant mass of muon pair
x3 = total jet energy x6 = ...

The real events don’t come with true class labels, but computer-
simulated events do.  So we can have a set of simulated events 
that consist of a feature vector x and true class label y (0 for 
background, 1 for signal):

(x, y)1, (x, y)2, ..., (x, y)N
The simulated events are called “training data”.
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Distributions of the features
If we consider only two 
features x = (x1, x2), we can 
display the results in a scatter 
plot (red:  y = 0, blue: y = 1).

The test’s critical region is  defined by a “decision boundary” –
without knowing the event type, we can classify them by seeing 
where their measured features lie relative to the boundary.

For each real event test the 
hypothesis that it is background.

(Related to this:  test that a sample 
of events is all background.)

For real events, the dots are 
black (true type is not known).
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Decision function, test statistic
A surface in an n-dimensional 
space can be described by

scalar 
function constant

Different values of the constant
tc result in a family of surfaces.

Problem is reduced to finding 
the best decision function or test 
statistic t (x).
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Distribution of t(x)

f(t|H1)f(t|H0)

W

By forming a test statistic t(x), the boundary of the critical region in 
the n-dimensional x-space is determined by a single single value tc.

tc
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Types of decision boundaries
So what is the optimal boundary for the critical region, i.e., what
is the optimal test statistic t(x)?

First find best t(x), later address issue of optimal size of test.

Remember x-space can have many dimensions.

“cuts” linear non-linear
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Test statistic based on likelihood ratio 
How can we choose a test’s critical region in an ‘optimal way’, in 
particular if the data space is multidimensional?

Neyman-Pearson lemma states:
For a test of H0 of size α, to get the highest power with respect to the
alternative H1 we need for all x in the critical region W

inside W and  ≤ cα outside, where cα is a constant chosen to give a 
test of the desired size.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.
G. Cowan / RHUL Physics

”likelihood 
ratio (LR)”
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Neyman-Pearson doesn’t usually help
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data:

generate x ~ f (x|s)     →     x1,..., xN
generate x ~ f (x|b)     →     x1,..., xN

This gives samples of “training data” with events of known type.

Use these to construct a statistic that is as close as possible to the 
optimal likelihood ratio (→ Machine Learning).



G. Cowan / RHUL Physics TAE 2022 Benasque (online) / Lecture day 1 32

Approximate LR from histograms
Want t(x) = f(x|s)/ f(x|b) for x here

N (x|s) ≈ f(x|s)

N (x|b) ≈ f(x|b)

N
(x
|s)

N
(x
|b
)

One possibility is to generate
MC data and construct
histograms for both
signal and background.

Use (normalized) histogram 
values to approximate LR:

x

x

Can work well for single 
variable.
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Approximate LR from 2D-histograms
Suppose problem has 2 variables.  Try using 2-D histograms:

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells.
But if we want M bins for each variable, then in n-dimensions we
have Mn cells; can’t generate enough training data to populate.

→ Histogram method usually not usable for n > 1 dimension.

signal back-
ground
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Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be
used directly, because we usually don’t have f (x|s), f (x|b).

Histogram method with M bins for n variables requires that
we estimate Mn parameters (the values of the pdfs in each cell),
so this is rarely practical.

A compromise solution is to assume a certain functional form
for the test statistic t (x) with fewer parameters; determine them
(using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f (x|s) and 
f (x|b) (with something better than histograms) and use the 
estimated pdfs to construct an approximate likelihood ratio.
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Multivariate methods    (Machine Learning)
Many new (and some old) methods:

Fisher discriminant
(Deep) Neural Networks
Kernel density methods
Support Vector Machines
Decision trees

Boosting
Bagging
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Linear test statistic

Suppose there are n input variables:  x = (x1,..., xn).  

Consider a linear function:

For a given choice of the coefficients w = (w1,..., wn) we will
get pdfs f (y|s) and f (y|b) :
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Linear test statistic

Fisher:  to get large difference between means and small widths 
for f (y|s) and f (y|b),  maximize the difference squared of the
expectation values divided by the sum of the variances:

Setting ∂J / ∂wi = 0 gives:

,
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The Fisher discriminant

The resulting coefficients wi define a Fisher discriminant.

Coefficients defined up to multiplicative constant; can also
add arbitrary offset, i.e., usually define test statistic as

Boundaries of the test’s
critical region are surfaces 
of constant y(x), here linear 
(hyperplanes):
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Nonlinear decision boundaries
From the scatter plot below it’s clear that some nonlinear boundary
would be better than a linear one:

And to have a nonlinear 
boundary, the decision 
function t (x) must be 
nonlinear in x.
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Neural Networks
A simple nonlinear decision function can be constructed as

where h is called the “activation function”.   For this one
can use, e.g., a logistic sigmoid function,

u
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Single Layer Perceptron

In this form, the decision 
function is called a 
Single Layer Perceptron –
the simplest example of a 
Neural Network.

But the surface described by t (x)  = tc is the same as by 

So here we still have a linear decision boundary.

input layer

output node
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Multilayer Perceptron
The Single Layer Perceptron can be generalized by defining
first a set of functions φi(x), with i = 1,..., m:

The φi(x) are then treated as if they were the input variables, in
a perceptron, i.e., the decision function (output node) is
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Multilayer Perceptron (2)

input 
layer

output node

hidden layer with m nodes 
φ1(x),..., φm(x)

Each line in the graph represents one of the weights wij(k),
which must be adjusted using the training data.
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Training a Neural Network
To train the network (i.e., determine the best values for the
weights), define a loss function, e.g.,

where w represents the set of all weights, the sum is over the
set of training events, and yi is the (numeric) true class label
of each event (0 or 1).

The optimal values of the weights are found by minimizing
E(w) with respect to the weights (non-trivial algorithms:
backpropagation, stochastic gradient descent,...).

The desired result for an event with feature vector x is:
if the event is of type 0, want t (x) ~ 0,
if the event is of type 1, want t (x) ~ 1.
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Distribution of neural net output

signalback-
ground

Degree of separation between classes now much better than 
with linear decision function:
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Neural network example from LEP II
Signal:  e+e- → W+W- (often 4 well separated hadron jets)

Background:  e+e- → qqgg (4 less well separated hadron jets)

←  input variables based on jet
structure, event shape, ...
none by itself gives much separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)



TAE 2022 Benasque (online) / Lecture day 1 47G. Cowan / RHUL Physics

Deep Neural Networks
The multilayer perceptron can be generalized to have an arbitrary 
number of hidden layers, with an arbitrary number of nodes in 
each (= “network architecture”).

A “deep” network has several (or many) hidden layers:

H.I. Kim and K.Y. Han, Water 2020, 12(3), 899

“Deep Learning” is a 
very recent and active 
field of research.
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Other types of classifiers
We have seen only two types of classifiers:

Linear (Fisher discriminant)
Neural Network

There are many others:
Support Vector Machine
Boosted Decision Tree
K-Nearest Neighbour
...

The field is rapidly developing with advances, e.g., that allow one
to use feature vectors of very high dimension, such as the pixels
of an image.

→ face/handwriting recognition, driverless cars...
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Extra slides
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Some distributions
Distribution/pdf Example use in Particle Physics
Binomial Branching ratio
Multinomial Histogram with fixed N
Poisson Number of events found
Uniform Monte Carlo method
Exponential Decay time
Gaussian Measurement error
Chi-square Goodness-of-fit
Cauchy Mass of resonance
Landau Ionization energy loss
Beta Prior pdf for efficiency
Gamma Sum of exponential variables
Student’s t Resolution function with adjustable tails
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Binomial distribution

Consider N independent experiments (Bernoulli trials):
outcome of each is ‘success’ or ‘failure’,
probability of success on any given trial is p.

Define discrete r.v. n = number of successes (0 ≤ n ≤  N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is

But order not important; there are

ways (permutations) to get n successes in N trials, total 
probability for n is sum of probabilities for each permutation.
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Binomial distribution  (2)

The binomial distribution is therefore

random
variable

parameters

For the expectation value and variance we find:
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Binomial distribution  (3)
Binomial distribution for several values of the parameters:

Example:  observe N decays of W±,  the number n of which are 
W→μν is a binomial r.v., p = branching ratio.
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Multinomial distribution
Like binomial but now m outcomes instead of two, probabilities are

For N trials we want the probability to obtain:

n1 of outcome 1,
n2 of outcome 2,

⠇
nm of outcome m.

This is the multinomial distribution for
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Multinomial distribution (2)
Now consider outcome i as ‘success’, all others as ‘failure’.

→ all ni individually binomial with parameters N, pi

for all i

One can also find the covariance to be

Example:  represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution
Consider binomial n in the limit

→ n follows the Poisson distribution:

Example:  number of scattering events
n with cross section σ found for a fixed
integrated luminosity, with
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Uniform distribution
Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is:

Notation:  x follows a uniform distribution between α and β

write as: x ~ U[α,β]
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Very often used with  α = 0, β = 1 (e.g., Monte Carlo method).

For any r.v. x with pdf f(x), cumulative distribution F(x), the 
function y = F(x) is uniform in [0,1]:

Uniform distribution (2)

because f(x) = dF/dx = dy/dx
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Exponential distribution
The exponential pdf for the continuous r.v. x is defined by:
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Example:  proper decay time t of an unstable particle

(τ = mean lifetime)

Lack of memory (unique to exponential):

Exponential distribution (2)

Question for discussion:

A cosmic ray muon is created 30 km high in the atmosphere, 
travels to sea level and is stopped in a block of scintillator, giving a 
start signal at t0.  At a time t it decays to an electron giving a stop 
signal.  What is distribution of the difference between stop and 
start times, i.e., the pdf of t – t0 given t > t0?
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Gaussian (normal) distribution
The Gaussian (normal) pdf for a continuous r.v. x is defined by:

N.B. often μ, σ2 denote
mean, variance of any
r.v., not only Gaussian.
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Standardized random variables
If a random variable y has pdf f(y) with mean μ and std. dev. σ, 
then the standardized variable

has mean of zero and standard deviation of 1.

Often work with the standard Gaussian distribution (μ = 0. σ = 1)
using notation:

Then e.g. y = μ + σx follows

has the pdf 



63G. Cowan / RHUL Physics TAE 2022 Benasque (online) / Lecture day 1

Multivariate Gaussian distribution
Multivariate Gaussian pdf for the vector 

are column vectors, are transpose (row) vectors, 

Marginal pdf of each xi is Gaussian with mean μi, standard 
deviation σi = √Vii .
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https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Two-dimensional Gaussian distribution

where ρ = cov[x1, x2]/(σ1σ2) 
is the correlation coefficient.
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Chi-square (χ2) distribution
The chi-square pdf for the continuous r.v. z (z ≥ 0) is defined by

n = 1, 2, ... =  number of ‘degrees of
freedom’ (dof)

For independent Gaussian xi, i = 1, ..., n, means μi, variances σi2,

follows χ2 pdf with n dof.

Example:  goodness-of-fit test variable especially in conjunction
with method of least squares.
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Cauchy (Breit-Wigner) distribution
The Breit-Wigner pdf for the continuous r.v. x is defined by

(Γ = 2, x0 = 0 is the Cauchy pdf.)

E[x] not well defined,   V[x] → ∞.

x0 = mode (most probable value)

Γ = full width at half maximum

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ...

Γ = decay rate (inverse of mean lifetime)
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Landau distribution
For a charged particle with β = ν /c traversing a layer of matter
of thickness d, the energy loss Δ follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

+ - + -
- + - + 

β

d

Δ
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Landau distribution  (2)

Long ‘Landau tail’
→ all moments ∞

Mode (most probable 
value) sensitive to β ,

→ particle i.d.
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Beta distribution

Often used to represent pdf 
of continuous r.v. nonzero only
between finite limits, e.g.,
y = a0 + a1x,    a0 ≤ y ≤ a0 + a1
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Gamma distribution

Often used to represent pdf 
of continuous r.v. nonzero only
in [0,∞].

Also e.g. sum of n exponential
r.v.s or time until nth event
in Poisson process ~ Gamma
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Student's t distribution

ν = number of degrees of freedom
(not necessarily integer)

ν = 1 gives Cauchy,

ν → ∞ gives Gaussian.
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Student's t distribution (2)
If x ~ Gaussian with μ = 0, σ2 = 1, and 

z ~ χ2 with n degrees of freedom, then
t = x / (z/n)1/2 follows Student's t with ν = n.

This arises in problems where one forms the ratio of a sample 
mean to the sample standard deviation of Gaussian r.v.s.

The Student's t provides a bell-shaped pdf with adjustable
tails, ranging from those of a Gaussian, which fall off very
quickly, (ν → ∞, but in fact already very Gauss-like for 
ν =  two dozen),  to the very long-tailed Cauchy (ν = 1). 

Developed in 1908 by William Gosset, who worked under
the pseudonym "Student" for the Guinness Brewery.



TAE 2022 Benasque (online) / Lecture day 1 73

Proof of Neyman-Pearson Lemma

G. Cowan / RHUL Physics

Consider a critical region W and suppose the LR 
satisfies the criterion of the Neyman-Pearson 
lemma:

P(x|H1)/P(x|H0)  ≥  cα for all x in W, 
P(x|H1)/P(x|H0)  ≤  cα for all x not in W.

δW+

Try to change this into a different critical 
region W′ retaining the same size α, i.e.,

δW-

W′

W

To do so add a part δW+, but to keep the 
size α, we need to remove a part δW-, i.e., 



TAE 2022 Benasque (online) / Lecture day 1 74

Proof of Neyman-Pearson Lemma (2)

G. Cowan / RHUL Physics

δW+But we are supposing the LR is higher for 
all x in δW- removed than for the x in 
δW+ added, and therefore

δW-

W′

The right-hand sides are equal and therefore 
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Proof of Neyman-Pearson Lemma (3)

G. Cowan / RHUL Physics

Note W and δW+ are disjoint, and 
W′ and δW- are disjoint, so by 
Kolmogorov’s 3rd axiom,

We have

Therefore

δW+

δW-

W′
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Proof of Neyman-Pearson Lemma (4)

G. Cowan / RHUL Physics

And therefore 

i.e. the deformed critical region W′ cannot have higher power 
than the original one that satisfied the LR criterion of the 
Neyman-Pearson lemma.


