
  

QFT and Effective Field Theories

         José Santiago  [jsantiago at ugr.es]

Drop me a line if you 
need anything!



  

What is (not) this course?

● Not an introduction to QFT (basic knowledge is assumed)
● No formal, rigorous proofs but plausibility arguments.
● Emphasis is on EFTs: we’ll discuss the QFT that we need for EFTs
● Not a complete EFT course: focus on particle physics (mostly BSM)
● We will sacrifice completeness for detailed specific examples (emphasis 

not only on concepts but mostly on calculability)
● Most of the calculations will be done in tutorials (can be done by hand but 

we will also use computer tools)
● If there is ANYTHING you don’t understand please stop me and ask.
● Use some of the (very useful) resources:

– Skiba (TASI 2009, arXiv 1006.2142)
– Manohar (Les Houches 2017, arXiv 1804.05863)
– Cohen (TASI 2018, arXiv 1903.03622)
– … and many others



  

Why EFT?

● Because nature decouples! Observations always have a finite 
precision. Given that precision we only need to care about certain 
degrees of freedom, symmetries and dynamics.

● Because it’s easier: EFTs split complicated multi-scale calculations 
into series of simpler single-scale calculations.

● Because we have to (I): Sometimes we do not know (or can’t 
compute) the dynamics at high energies. EFTs allow us to parametrize 
the low energy effects of such unknown UV dynamics. 

● Because we have to (II): In multi-scale problems large logs can ruin 
perturbation theory (even in renormalizable models) these large logs 
can only be resummed by using EFTs and RGE.



  

What is EFT?

● It’s the one thing that we constantly do in physics: dimensional 
analysis + (Taylor) perturbative expansion … with a few subtleties 
from QFT.
● At least in some cases we can prove that the result is analytic (and 

therefore can genuinely been expanded).
● Locality and renormalization: we have to perform the expansion carefully

● Like any perturbative expansion:
● It is useful because experimental measurements have a finite precision.
● It’s usefulness (range of validity) depends on the size of the expansion 

parameter (and the nature of the expansion itself).



  

Observables in QFT

● The relevant observables in particle physics are given by S-matrix 
elements, which can be computed from correlators via the LSZ 
reduction formula

● This is valid for any interpolating field

where the correlator is defined as



  

Observables in QFT

● Correlators can be computed in perturbation theory via

where the correlator is defined as

and Wick’s theorem



  

Which Lagrangian?

● Our QFT will be defined by the Lagrangian, a sum of local, invariant 
(gauge, Lorenzt, ...) operators built with a finite number of fields and 
their (covariant) derivatives.

● Which operators? In principle all local invariant ones, each with an 
arbitrary coefficient called Wilson coefficient. (We will see that some 
operators are more relevant than others.)

● Quadratic operators are special: they fix the global scale (kinetic term) 
via canonical normalization or fix the on-shell condition (mass term), 
plus we know how to solve them (free theory = harmonic oscillator).



  

Which Lagrangian?

● Quadratic operators also fix the (mass) dimension of the fields



  

Which Lagrangian?

● Quadratic operators also fix the (mass) dimension of the fields

● For any field f (boson or fermion)



  

Which Lagrangian?

● Quadratic operators also fix the (mass) dimension of the fields



  

Which Lagrangian?

● Quadratic operators also fix the (mass) dimension of the fields

In general:



  

Regularization and renormalization

● Feynman rules instruct us to integrate over loop momenta, resulting 
sometimes in divergent expressions. These require regularization and 
renormalization in order to make sensible quantitative predictions for 
physical observables.

● There is a whole machinery for loop calculations that is worth 
mastering but here we will either use computer tools to do the loop 
calculations or use special techniques useful in EFT calculations.

● We will use dimensional regularization: 
● Analytic continuation from D=4 to D=4-2ε.
● Divergences appear as poles at ε=0.



  

Regularization and renormalization

● Some useful properties in dimensional regularization: 
● Scaleless integrals vanish

● Tadpole (and higher)

all others identically 0



  

Regularization and renormalization

● Some other properties we will use: 
● Partial fractioning

● Propagator expansions



  

Regularization and renormalization

● Before renormalizing let’s discuss how UV divergences look like.
● Up to sub-divergences, UV divergences coming from loop integrals are 

proportional to polynomials in external momenta.



  

Regularization and renormalization



  

Regularization and renormalization



  

Regularization and renormalization

● The practical idea behind renormalization is that terms in the 
Lagrangian are not observable (and could therefore be anything, even 
infinity). Each Wilson coeff. has to be fixed by computing a physical 
observable that depends on it.

● We will use MS renormalization, that eliminates only the       UV          
divergences (renormalized WC still have to be fixed by experiment).

● The original terms in the Lagrangian are called “bare” terms (fields 
and WCs):

● Bare objects are written in terms of renormalized ones times 
renormalization constants:



  

Regularization and renormalization

● Focusing on 1-loop renormalization we can write
● The bare Lagrangian is then written as

● The counterterms             are fixed by cancelling the        UV 
divergences (which are local operators and we have written all of 
them).

● Sometimes it’s useful to write the mass dimension of the WCs 
explicitly

Wave function 
renormalization

Renormalized Lagrangian Counterterm Lagrangian



  

Power counting and renormalizability

● Let’s consider the contribution of a single insertion of an operator of 
dimension d in an low energy amplitude normalized to be 
dimensionless

● The higher the dimension of the operator the smaller its contribution at 
low energies.

● The general power counting equation is
● Also true at loop level for mass-independent regularization schemes.
● Operators of dimension higher than 4 have suppressed effects at low 

energies. Given a finite experimental precision we only need operators 
up to certain dimension (and there are a finite number of these).



  

Power counting and renormalizability

● Let’s sketch renormalizability of renormalizable theories (operators of 
dimension 4 or less)



  

Power counting and renormalizability

● What about non-renormalizable theories (those with operators of 
dimension larger than 4)? 
● Formally they are non-renormalizable: more insertions require higher-

dimensional operators which themselves induce even higher-dimensional 
divergencies so that an infinite number of counterterms are required to 
renormalize the theory.

● In practice, given the finite precision of experimental data, we only need to 
consider operators up to certain dimension.

● An EFT is the set of all allowed local operators with mass dimension less 
than some maximum one. This theory will generate divergences of higher 
dimension but the corresponding operators produce such a small 
phenonenological effect that they are irrelevant and therefore we don’t 
need to consider them.

In practice, non-renormalizable theories are as good for loop 
calculations as renormalizable theories (only a finite number of 
counterterms are needed to renormalize them).



  

Redundancies and EoM

● Let’s consider the following Lagrangian

● And perform the field redefinition
● The resulting Lagrangian is

● The last operator has disappeared! But the physics is the same.
● This field redefinition is equivalent, at the linear level, to using EoM of 

L4 into L6

● Operators that can be eliminated via EoM are called redundant and 
are not necessary to compute physical observables (but are to 
compute off-shell quantities).

Still an interpolating field

[Arzt, ph/9304230; Criado, Pérez-Victoria, 1811.09413]



  

● Some properties are only valid in D=4. Corrections of order    can hit a 
pole and give a finite (possibly ambiguous – scheme dependence –) 
“rational” contribution

● The one-loop matching, and the RGEs from two loops depend on the 
coefficients of the evanescent operators

Redundancies in 4D: evanescent operators

[Dekens, Stoffer 1908.05295]

[Herrlich, Nierste ph-9412375]



  

● Which basis should we use?
● We can always use integration by parts (momentum conservation).
● We can use 4D properties for tree-level calculations (no evanescent) or 

one-loop RGEs (only interested in divergent terms).
● We can use EoM (field redefinitions) when computing on-shell quantities 

(minimal basis).
● We have to include redundant operators when computing off-shell 

quantities (Green basis).
● It is non-trivial to build minimal or Green bases but they have to be 

built only once for each EFT (and not always).

Bases in EFTs



  

● Minimal basis (SM EFT dim 6)

Bases in EFTs

[Grzadkowski et al 1008.4884]



  

● Green basis (SM EFT dim 6)

Bases in EFTs

[Gherardi, Marzocca, Venturini 2003.12525]



  

● When computing in gauge theories we have to fix the gauge, the 
quantum theory is no longer gauge invariant but just BRST invariant.

● This is enough to get gauge invariant results for physical quantities but 
not for non-physical ones (off-shell Green functions, counterterms, …).

● We split the fields into classical background fields and quantum 
fluctuations and fix the gauge for the latter (leaving the theory invariant 
under gauge transformations of the background fields).

● Background fields never appear in loops, quantum fields can only be 
in loops.
● Off-shell Green functions, UV divergences, are explicitly gauge invariant.
● The covariant derivative does not renormalize (divergence must be 

proportional to           but

On gauge invariance: Background field method
[Abbott, NPB185 (1981)]



  

● Let’s consider our EFT Lagrangian 

● UV divergences generated from it can be parameterized in terms of 
local operators (after canonical normalization and reduction to 
physical basis)

● These divergences can be cancelled by counterterms

● Using that the bare WC are independent of μ we get

RGE for general theories (at 1 loop)



  

● In the bottom-up approach to EFTs we only care about the EFT: it 
parameterizes the low energy effects of any UV dynamics.
● It helps us parameterize experimental data in a model-independent way in 

the form of global fits.
● Examples: Chiral Lagrangian (low energy QCD), SMEFT (“any” BSM)

● In the top-down approach we consider specific UV models and match 
them to the EFT (compute the WCs of the EFT in terms of the 
parameters of the UV theory).
● We lose model independence in favor of model discrimination.
●  Smaller number of parameters (easier to handle in fits).
● Only way to compare direct and indirect limits, range of validity of EFT, …
● Can be used to completely classify new physics models: IR/UV 

dictionaries.

EFTs: bottom-up vs top-down



  

● The idea behind matching is to Taylor expand in the heavy mass limit

● What about loops? Because of divergences loop integration and 
heavy mass expansion do not commute … but the difference is local!

EFTs from the top-down: matching and running

Take enough derivatives wrt external momenta or light masses 
until the integral is finite, then the expansion and integration 
commute. The difference is obtained by integrating in external 
momenta and light masses, which is local (a polynomial) in both.

[Witten, NPB104 (1976), NPB122 (1977)]



  

● The difference between the UV and the EFT is local!

EFTs from the top-down: matching and running

Taken from Pich’s lectures ph/9806303
Tree level

One loop: Compare renormalized amplitudes (we have to be consistent!)



  

● Which amplitudes do we compute?
● On-shell matching: all connected amplitudes with external, on-shell, light 

particles up to the dimension we need (number of fields and derivatives).
– PROs: We don’t need redundant operators.
– CONs: The number of diagrams is in general very large; we lose cross-checks.

● Off-shell matching: 1lPI (one-light-particle-irreducible) off-shell Green 
functions with external light particles up to the needed dimension.
– PROs: Fewer diagrams; large redundancy, more cross-checks.
– CONs: Redundant operators needed.

EFTs from the top-down: matching and running

Why 1lPI?



  

● Which amplitudes do we compute?
● On-shell matching: all connected amplitudes with external, on-shell, light 

particles up to the dimension we need (number of fields and derivatives).
– PROs: We don’t need redundant operators.
– CONs: The number of diagrams is in general very large; we lose cross-checks.

● Off-shell matching: 1lPI (one-light-particle-irreducible) off-shell Green 
functions with external light particles up to the needed dimension.
– PROs: Fewer diagrams; large redundancy, more cross-checks.
– CONs: Redundant operators needed.

EFTs from the top-down: matching and running

Because contributions with light (off-shell) bridges are accounted for by adding 
operators in the EFT at tree-level. In on-shell matching light bridges account for 
the redundancies in the off-shell one and have to be included in the matching.

Why 1lPI?



  

● Before studying a specific model let’s consider the following integral:

● Let’s now expand the integrand first

Efficient matching: expansion by regions
Taken from Manohar’s lectures 1804.05863



  

● We got

● We learn a few interesting lessons:
– IF ≠ IEFT, the expansion vs integration order matters when there are divergences.
– UV poles are different in both integrals.
– Non-analytic dependence on light scales is the same in IF and IEFT.
– Dependence on M can be non-analytic in IF but it is analytic in IEFT.
– IF has a large log that can (sometimes have to) be resummed via RGE.
– The difference between the two integrals, after renormalization, gives the 

matching condition.

Efficient matching: expansion by regions
Taken from Manohar’s lectures 1804.05863

Analityc in m!



  

● What do we gain if we had to compute the full theory integral?
● There is a better way thanks to the expansion by regions technique. 

The integrand in IF is singular for             (soft region) and for            
(hard region). Let’s compute the integral expanding in both regions. 

Efficient matching: expansion by regions
Taken from Manohar’s lectures 1804.05863



  

● What do we gain if we had to compute the full theory integral?
● There is a better way thanks to the expansion by regions technique. 

The integrand in IF is singular for             (soft region) and for            
(hard region). Let’s compute the integral expanding in both regions.

● The matching comes from the hard region contribution of the UV 
theory

– No need to compute in the EFT.
– No need to do the full UV calculation.
– Only the tadpole integral is needed for the calculation.

● New matching procedure (1-loop):
● Compute the hard region contribution in the UV theory.
● Forget about    terms (UV MS-barred away, IR cancel in the difference)
● Match the result to the tree level contribution of the EFT.

Efficient matching: expansion by regions
Taken from Manohar’s lectures 1804.05863



  

● Let’s consider the following UV theory

● We want to find the EFT that reproduces its low-energy effects.

EFTs from the top-down: tree level matching



  

● How do we match (in a systematic way) off-shell?

1) Build a Green basis (only once per EFT).

2) Compute, in the full theory, the hard region of the 1lPI contribution to all the 
amplitudes needed from the (tree-level) EFT side.

3) Match all kinematic invariants to the tree-level EFT (imposing momentum 
conservation = ibp in the EFT Lagrangian).

4) Solve for the Wilson Coefficients and check that all off-shell kinematic 
invariants are matched (non-trivial cross-check!).

5) A further cross-check (sometimes necessary) is gauge invariance 
(compute amplitudes with momentum replaced with gauge bosons), when 
using the background field method.

EFTs from the top-down: tree level matching



  

● How do we match (in a systematic way) off-shell?

1) Build a Green basis (only once per EFT).
● Let’s focus on four-fermion interactions up to dim 8 (only with derivatives)

2) Compute, in the full theory, the hard region of the 1lPI contribution to all the 
amplitudes needed from the (tree-level) EFT side.

● Since we only want these operators it’s enough to compute                   to order

EFTs from the top-down: tree level matching



  

● How do we match (in a systematic way) off-shell?

2) Compute, in the full theory, the hard region of the 1lPI contribution to all the 
amplitudes needed from the (tree-level) EFT side.

● Since we only want these operators it’s enough to compute                   to order

EFTs from the top-down: tree level matching



  

● How do we match (in a systematic way) off-shell?

3) Match all kinematic invariants to the tree-level EFT (imposing momentum 
conservation = ibp in the EFT Lagrangian).

EFTs from the top-down: tree level matching



  

● How do we match (in a systematic way) off-shell?

4) Solve for the Wilson Coefficients and check that all off-shell kinematic 
invariants are matched (non-trivial cross-check!).

EFTs from the top-down: tree level matching

The same procedure is used for matching at arbitrary loops!!



  

● Matching can be done also functionally. At tree level it corresponds to 
just solve the classical EoM for the heavy fields and introduce them 
back in the Lagrangian.

EFTs from the top-down: tree level matching



  

● Let’s see an explicit example of how to compute the RGEs for an EFT. 
We start with the following EFT

● We want to compute the UV divergences up to dim 6: 1 insertion of c

EFTs from the top-down: RGE running



  

● Let’s see an explicit example of how to compute the RGEs for an EFT. 
We start with the following EFT

● We want to compute the UV divergences up to dim 6: 1 insertion of c

EFTs from the top-down: RGE running



  

● Let’s see an explicit example of how to compute the RGEs for an EFT. 
We start with the following EFT

● We want to compute the UV divergences up to dim 6: 1 insertion of c

EFTs from the top-down: RGE running



  

● Let’s see an explicit example of how to compute the RGEs for an EFT. 
We start with the following EFT

● We want to compute the UV divergences up to dim 6: 1 insertion of c

EFTs from the top-down: RGE running



  

● We also need the UV divergence for the kinetic term

EFTs from the top-down: RGE running



  

● The original plus divergent Lagrangian fixes the counterterms and 
therefore the RGE

● At one loop level we can consider the couplings on the RHS not to 
run. This is the leading log (LL) approximation:

EFTs from the top-down: RGE running



  

● RGE can be used to resum all loop order contributions of the form

● Which leads to RG-improved perturbation theory:
● LO
● NLO
● ... 

EFTs from the top-down: RGE running

Important when            but



  

● Sometimes counterterms depend on new operators (operator mixing)

EFTs from the top-down: RGE running



  

● Sometimes counterterms depend on new operators (operator mixing)

EFTs from the top-down: RGE running



  

● Let’s now go on to compute the 1-loop matching. We will consider the  
contribution to fermion-fermion scattering.

EFTs from the top-down: 1-loop matching
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● Let’s now go on to compute the 1-loop matching. We will consider the  
contribution to fermion-fermion scattering.

EFTs from the top-down: 1-loop matching



  

● Let’s do the matching the more efficient way (neglecting m^2 terms)

EFTs from the top-down: 1-loop matching
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● Let’s do the matching the more efficient way (neglecting m^2 terms)

EFTs from the top-down: 1-loop matching



  

● Why did we use a mass-independent renormalization scheme?

● Let’s see an example

EFTs and mass-(in)dependent renorm. schemes

The EFT expansion is a double expansion in          and loops. Using a mass 
independent renormalization scheme is crucial to keep these two expansions 
meaningful.

Taken from Manohar’s lectures ph/9606222



  

● The problem with mass independent schemes is that they don’t 
decouple!

EFTs and mass-(in)dependent renorm. schemes

The solution is to consider a new EFT without the 
heavy particle and match, then run to the next mass 
threshold and repeat the process until you reach the 
energies you are interested in.



  

● Let’s consider the following renormalizable Lagrangian

● We want to compute                 scattering at threshold

When EFT is the only way
Taken from Cohen’s lectures 1903.03622

There is no choice of     that makes both logs small so perturbation 
theory breaks down for



  

● Let’s do it the EFT way

● The matching, up to 1 loop gives (no correction to kinetic term)

● We can now use the RGE to run from      to 

● And now compute the amplitude in the EFT at 

When EFT is the only way
Taken from Cohen’s lectures 1903.03622

The log is small if we choose

The large log is 
resummed to all 
loop order

The log is also small if we 
choose



  

● What happened? The RGE in the EFT allowed us to resum (to all loop 
orders) the large log.

● Indeed, if we expand to leading log our NLO solution we get the 
original amplitude

When EFT is the only way
Taken from Cohen’s lectures 1903.03622



  

● Bottom-up: 
● Global fits with increasing number of experimental observables (EW, 

Higgs, top, flavor, LHC tails, …).
● One-loop dim-6 in the EFT slowly being incorporated.
● Explicit construction of bases up to dim 9 (with and without neutrinos). 
● Dim 8 effects starting to be taken into account.

● Bottom-up/top-down:
● RGEs: known for SMEFT and LEFT up to dim 6, partial results for dim 8
● Matching: Matching from SMEFT to LEFT up to 1-loop known
● Both implemented in computer codes
● RGEs for beyond the SMEFT (ALPs, neutrinos, ...)

What’s new now in EFTs?



  

● Top-down: 
● Impressive progress in functional matching up to one-loop. 

– Codes available to make the matching easier (but no fully automated yet).
● Fully automated matching up to one loop via Feynman diagrams now 

available.          [Matchmakereft, A. Carmona, A. Lazopoulos, P. Olgoso, J. 
Santiago, 2112.10787] 

● IR/UV dictionaries being developed:
– Complete classification of all models that contribute to the EFT at certain order 

and matching to the EFT.
– Leading contribution (tree-level, dimension 6) already finished, next ones in 

progress.

What’s new now in EFTs?

[Blas, Criado, Pérez-Victoria, Santiago,  1711.10391]



  

● Tree-level, dim 6 IR/UV dictionary:

What’s new now in EFTs?

[Blas, Criado, Pérez-Victoria, Santiago,  1711.10391]

19 
scalars

13 
fermions

16 
vectors



  

Thank you!
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