Gauge Coupling Unification and
Split Supersymmetry

1 Unification

There are various arguments as to why a Supersymmetric extension of the Standard Model may be
of interest for understanding TeV scale physics such as we will probed at the Large Hadron Collider.
One motivation people often give is that susy ‘predicts a unification of gauge couplings’. In this
question, we’ll see what this means. ..

We write the renormalisation group equation for the gauge couplings g3, g2, g1 of the Standard Model
group SU(3) x SU(2) x U(1) as

M|.NM = Hmﬂm g3 (no sum on 1) (1)
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where g here is the renormalisation scale, and [3; are the one-loop beta-function coefficients (real
constants).

For SU(N) gauge groups, we calculated the 3; coefficients in the Standard Model course:
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where f denotes a 2-component Weyl fermion and s a complex scalar. T is the Dynkin Index of
the appropriate representation of SU(NN) corresponding to the field f or s; explicitly, this is 1/2 for
the fundamental rep' and N for the adjoint rep.

For U(1) we have
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where Y7 ¢ is the hypercharge of a (2-component) fermion or complex scalar respectively.

IThis choice is just a convention — once fixed, all the other Tk values follow.



In tutorial 3 we saw that for the Standard Model, at one-loop order,
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whereas for the MSeM
p1 =11 f2=1 f3=-3. (4)
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a) Defining o;(p) = gi AE, solve the RG equation (1) to find a relationship between a;(Mz) and

b)

d)

o)
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(o) for a general scale pyp.

Hint: Equation (1) takes the simplest form when written in terms of a1
Grand Unified Theories predict that at some scale o = Mgyr,

WQ_ (Mcur) = as(Mcur) = as(Mgur)- (5)

Assuming this, derive
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a3(Mz)™' = ag(Mz)™' +

Taking the (rough) experimental values g;(Mz) = 0.357 and ga2(Mz) = 0.652, and assuming
all the Standard Model couplings unify at Mgyr, what value of g3(Mz) do we predict from
equation (6)? Does the MS2M do any better, if we assume that susy is broken just above the
electroweak scale?

Show that if we introduce the fine-structure constant a = m, with e = g9 sinfy and tan Oy =

.mw, then equation (6) can be recast as

(7)
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where by = (33, bp = 3 and b; = m (1. Furthermore, show that the unification scale is given by
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and that at the unification scale, the value of the coupling is
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What is the Unification scale and value of the coupling at Mgy predicted by:
(i) the Standard Model?
(ii) the MSeM?



2 Split Supersymmetry

The idea of Split Supersymmetry is to forget using susy as a solution to the hierarchy problem, but
to still require that it leads the unification of gauge couplings and provides a dark matter candidate.
We'll look at this idea, following reference [1]; their starting point was to note that the beta-function
coefficients, b;, can be written as

by = w (4N, — 33 + N3) (10a)
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where N, counts the contribution to the S-functions from complete SU(5) irreps, and it is normalized
such that the 3 families of SM quarks and leptons give N, = 3.? For the MS2M one can easily show
that Ny = 3. The number of Higgs doublets is ny, and N; (i = 1,2, 3) give the contributions from
matter in incomplete GUT multiplets (for example, in the MSEM, this includes contributions from
the gauginos and higgsinos).

The important observation is that Ny actually cancels out in the equations (7) and (8), and so
doesn’t enter into the predictions for a; or Mgyr. Split sUsy makes use of this fact: All scalars in
the MSE2M can be very heavy, except one Higgs, and unification can still take place.® We still need
the gauginos (g, W and wv and Higgsinos m:.a to have masses of order the TeV scale in order to
retain the nice features of unification, and to also have interesting dark matter candidates.

a) If we send the scale of susy to the GUT scale, what are the natural values for the squark and
slepton masses? What about the fermionic superpartners (gauginos and higgsinos)?

b) Another interesting feature of split susy is that pushing the scalar masses to high scales alle-
viates the most pressing bounds from flavor-changing neutral currents (FCNCs), CP violation,
proton decay and so on. The reason is that all those dangerous bounds are based on calculat-
ing a diagram that is suppressed by a factor of the scalar masses. For example, let’s look at
the Mgcalar dependence of the p — ey bound: the susy particles typically contribute to this
process through a diagram of the type:



where the mass insertion (grey blob) comes from a flavor-violating, soft susy-breaking term of

the form ISWSt €t. One can use naive dimensional analysis (NDA) to estimate the size of this
contribution to the branching ratio to be
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where mj is the slepton mass, and we have used the fact that p decays are dominated by

1 — evuVe, which goes as Qwﬂ Is this formula dimensionally correct?

c) Assume Swft ~ Sw (no flavor hierarchy) and mpg ~ v. Find the experimental constraint on the

BR(p — e7y) and use it to derive a lower bound on mj.

d) In split susy, gluinos (gluini?!) are lighter than squarks, so it is interesting to think about how
gluinos decay. Use NDA to estimate the decay width I'y, and hence the decay length, c7, of
the gluino as a function of my and mj (assuming that mg > mysp, so there are susy particles
for g to decay into).

Long lived gluinos are a ‘smoking gun’ feature of split susy. The LHC is looking for them by
keeping the detectors on when there are no collisions; as gluinos carry color charge, if they hang
around long enough they end up getting bound up into R-hadrons (hadrons with non-trivial charge
under R-parity) that can potentially be brought to rest by all the material in the detector. If the
beams are colliding, the detector is too busy detecting other things to notice the intermittent decays
of these R-hadrons, but when there are no collisions, one would only expect to register cosmic rays,
and possibly the decay of interesting stuff trapped in the detector.
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1 Goldstone Bosons

According to Goldstone’s theorem,| whenever a global symmetry group G is spontaneously broken
down to a smaller one H, it gives rise to dim(G) — dim(H ) massless bosons known as Goldstone

bosons.
Today we're going to look at what happens when we spontaneously break a global symmetry:
SU(N) — SU(N —1) . (1)
a) How many Goldstone bosons (GBs) are generated by this breaking?

There are many ways to parameterise the GB fields, but we will try to be smart and choose a
representation which clearly shows how all the fields transform under SU(N) and SU(N —1).

b) Explain how the N x N matrix

S,T_m ASML wv iﬂqu-H§A2|Hva2|Hvsmﬁ§ Gv

provides a represention of the unbroken symmetry transformations.

Let’s represent the GBs by introducing an N x N matrix II in the following way

d(z) = M@/ go(z) (3)
where
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c) How does ¢ transform under the unbroken symmetries?

d) Does ¢ contain the right number of degrees of freedom?

e) We would like to see how ¢ transforms under the broken symmetries. We will first represent

g)

the broken symmetries by the transformation:
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Show that ¢ transforms as
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to first order in @, where

(i) The 7 field shifts linearly:
7 =7+ fa. (8)

(ii) The field ¢g is invariant under SU(N — 1) transformations.

Although one says that the SU(/N) symmetry has been spontaneously broken down to SU(/N—1)
what really happens is that the broken part of the symmetry is realized in a way that is different
from the unbroken parts. To see this more clearly compare how the fields transform under a
broken symmetry vs. how they transform under the unbroken ones. For the broken generators
one says that the symmetries are “non-linearly” realized. Thus for infinitesimal tranformations
involving the broken generators one requires that the shifts in (8) are symmetries. Show
that this statement is consistent with the statement of Goldstone’s theorem that the GBs are
massless.

This shift symmetry also implies that no potential is generated (no quartic coupling, no term
made up of powers of the field) and only derivative interactions are allowed. To see this
explicitly, expand the GB kinetic term

o' o (9)

up to quartic order in the fields.



