

TAE (Taller de Altas Energias) - Workshop on High Energy Physics Benasque September 2022

European Research Council Established by the European Commission

QCD

Carlos A. Salgado IGFAE - Santiago de Compostela

[Two lectures on selected topics]

Lecture 1: QCD at colliders - "gluon multiplication"

□ Jets

Parton Distribution Functions

Lecture 2: Hot and dense QCD

□ The structure of matter in extraordinary conditions of temperature and density

TAE 2022 - Benasque

Outline

Afternoon - two cases revealing quantum coherence

QCD and collectivity

All particle content and interactions of the Standard Model discovered using this principle — greatest success of the reductionistic approach in Physics

Also very successful — Complex systems with emerging behavior [Strongly-coupling many body systems; quantum entanglement with many d.o.f...]

Equilibrium AND non-equilibrium dynamics

TAE 2022 - Benasque

Standard Model built/discovered looking for the highest possible degree of simplicity

- Region of transition largely unknown
- QCD rich dynamical content, with emerging dynamics that happens at scales easy to reach in collider experiments

Best available tool to study the first levels of complexity

[This animation was done before LHC started]

An apparently simple lagrangian hides a plethora of emerging

[This animation was done before LHC started]

Nucleus-nucleus collisions provide optimal conditions for these QCD studies - extended object in the transverse plane

QCD

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
 - Asymptotic states.
 - Ż Normal conditions of temperature and density.
 - Ż Nuclear matter (us).
 - Colorless objects. N.

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
 - Fundamental particles. Ý

charge=+2/3	u (~5 MeV)	c (~1.5 GeV)	t (~175 GeV)
charge=-1/3	d (~10 MeV)	s (~100 MeV)	b (~5 GeV)

Colorful objects. color = charge of QCD \longrightarrow vector Ý. Similar to QED, but gluons can interact among themselves

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
 - Fundamental particles. Y

charge=+2/3	u (~5 MeV)	c (~1.5 GeV)	t (~175 GeV)
charge=-1/3	d (~10 MeV)	s (~100 MeV)	b (~5 GeV)

Colorful objects. color = charge of QCD \longrightarrow vector Y. Similar to QED, but gluons can interact among themselves

Gluons carry color charge \longrightarrow This changes everything...

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
- \Rightarrow No free quarks and gluons: Confinement.

QCD is the theory of strong interactions. \Rightarrow It describes interactions between hadrons (p, π , ...) \Rightarrow Quarks and gluons in the Lagrangian \Rightarrow No free quarks and gluons: Confinement.

- ⇒ Strength smaller at smaller distances: Asymptotic freedom.

Dintirp

- \Rightarrow In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).
- \Rightarrow confinement \Longrightarrow isolated quarks (gluons) = infinite energy

intiirp

- \Rightarrow In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).
- \Rightarrow confinement \Longrightarrow isolated quarks (gluons) = infinite energy
- ⇒ colorless packages (hadrons) \implies vacuum excitations.

intiira

- \Rightarrow In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).
- \Rightarrow confinement \Longrightarrow isolated quarks (gluons) = infinite energy
- \Rightarrow colorless packages (hadrons) \implies vacuum excitations.

È	mas	ses:	
		mass (GeV)	$\sum q_m$ ((
	р	\sim 1	$2m_u + m_d$
	π	~0.13	$m_u + m_d$

intiira

TAE 2022 - Benasque

V(r) =

$$=-rac{A(r)}{r}+Kr$$

V(r) =

String picture

$$=-rac{A(r)}{r}+Kr$$

V(r) =

 \Rightarrow When the energy is larger than $m_q + m_{\bar{q}}$ a $q\bar{q}$ pair breaks the string and forms two different hadrons.

String picture

$$=-rac{A(r)}{r}+Kr$$

V(r) =

 \Rightarrow When the energy is larger than $m_q + m_{\bar{q}}$ a $q\bar{q}$ pair breaks the string and forms two different hadrons. \Rightarrow In the limit $m_q \rightarrow \infty$ the string cannot break (infinite energy)

String picture

$$=-rac{A(r)}{r}+Kr$$

two independent quark sectors

 \Rightarrow However, this symmetry is not observed Solution: the vacuum $|0\rangle$ is not invariant

Symmetry breaking

Chiral symmetry

- In the absence of quark masses the QCD Lagrangian splits into
 - $\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{gluons}} + i\bar{q}_L \gamma^\mu D_\mu q_L + i\bar{q}_R \gamma^\mu D_\mu q_R$
- \Rightarrow For two flavors $(i = u, d) \mathcal{L}_{QCD}$ is symmetric under $SU(2)_L \times SU(2)_R$

 - $\langle 0|\bar{q}_L q_R|0\rangle \neq 0 \longrightarrow \text{chiral condensate}$

Golstone's theorem \implies massless bosons associated: pions

So, properties of the QCD vacuum Confinement Chiral symmetry breaking Is there a regime where these symmetries are restored? QCD phase diagram

Free quarks and gluons? **Asymptotic freedom:** Quarks and gluons interact weakly at @ Small distances — increase density @ Large momentum — increase temperatures

and unconfined in phase II.

[Cabibbo and Parisi 1975]

TAE 2022 - Benasque

Fig. 1. Schematic phase diagram of hadronic matter. $\rho_{\rm B}$ is the density of baryonic number. Quarks are confined in phase I

TAE 2022 - Benasque

TAE 2022 - Benasque

First lattice calculation found a first order phase transition

TAE 2022 - Benasque

First lattice calculation found a first order phase transition

Including quark masses probably not a first order

 \rightarrow Present status: several different phases found.

TAE 2022 - Benasque

QCD — rich dynamical content, with emerging dynamics that happens at scales easy to reach in collider experiments — e.g. EoS

Experimental tools

High-energy heavy-ion coll. [high T, low n_B]

LHC — pp, pPb, PbPb, XeXe, (other lighter ions under study) RHIC — pp, dAu, AuAu, CuCu, UU,...

Medium energies HIC [moderate T, high n_B]

RHIC Beam Energy Scan

FAIR at GSI

NICA at Dubna

Cosmological observations — **notably GWs**

Neutron star coalescence - **low T, high n**_B

QCD — rich dynamical content, with emerging dynamics that happens at scales easy to reach in collider experiments — e.g. EoS

Experimental tools

High-energy heavy-ion coll. [high T, low n_B]

LHC — pp, pPb, PbPb, XeXe, (other lighter ions under study) RHIC — pp, dAu, AuAu, CuCu, UU,...

Medium energies HIC [moderate T, high n_B]

RHIC Beam Energy Scan

FAIR at GSI

NICA at Dubna

Cosmological observations — notably GWs

Neutron star coalescence - **low T, high n**_B

QCD — rich dynamical content, with emerging dynamics that happens at scales easy to reach in collider experiments — e.g. EoS

Experimental tools

High-energy heavy-ion coll. [high T, low n_B]

LHC — pp, pPb, PbPb, XeXe, (other lighter ions under study) RHIC — pp, dAu, AuAu, CuCu, UU,...

Medium energies HIC [moderate T, high n_B]

RHIC Beam Energy Scan

FAIR at GSI

NICA at Dubna

Cosmological observations — notably GWs

Neutron star coalescence - **low T, high n**_B

QCD — rich dynamical content, with emerging dynamics that happens at scales easy to reach in collider experiments — e.g. EoS

Experimental tools

High-energy heavy-ion coll. [high T, low n_B]

LHC — pp, pPb, PbPb, XeXe, (other lighter ions under study) RHIC — pp, dAu, AuAu, CuCu, UU,...

Medium energies HIC [moderate T, high n_B]

RHIC Beam Energy Scan

FAIR at GSI

NICA at Dubna

Cosmological observations — notably GWs

Neutron star coalescence - **low T, high n**_B

Neutron stars

EoS determines neutron star structure

Lattice QCD very challenging at finite μ_B

TAE 2022 - Benasque

Region relevant for neutron star structure largely unknown

QCD lectures 12

EoS constraints from GW

[Annala, Gorda, Kurkela, Vuorinen 2018; Annala, Gorda, Kurkela, Nattila, Vuorinen 2019; also Most et al. 2018; Dexheimer et al. 2019 - More recent studies available, not shown]

The existence of quark-matter core found to be a common feature of the allowed EoS

Further constraints for the EoS at higher and higher baryon density in future experiments FAIR, NICA

TAE 2022 - Benasque

QCD lectures 13

QCD thermodynamics I

 \Rightarrow In the grand canonical ensemble, the thermodynamical properties are determined by the (grand) partition function

 $Z(T, V, \mu_i) = \text{Tr}$

where $k_B = 1$, H is the Hamiltonian and N_i and μ_i are conserved number operators and their corresponding chemical potentials.

$$P = T \frac{\partial \ln Z}{\partial V} , \quad S =$$

 \Rightarrow Expectation values can be computed as

 $\langle \mathcal{O} \rangle$:

 $\mathrm{Tr}\mathcal{O}\,\mathrm{ex}$ Trext

$$\exp\{-\frac{1}{T}(H-\sum_{i}\mu_{i}N_{i})\}$$

 \Rightarrow The different thermodynamical quantities can be obtained from Z

$$\frac{\partial (T \ln Z)}{\partial T}, \quad N_i = T \frac{\partial \ln Z}{\partial \mu_i}$$

$$\frac{\exp\{-\frac{1}{T}(H-\sum_{i}\mu_{i}N_{i})\}}{\exp\{-\frac{1}{T}(H-\sum_{i}\mu_{i}N_{i})\}}$$

QCD thermodynamics II

makes the change -it = 1/T, with this, the action

$$iS \equiv i \int dt \mathcal{L} \longrightarrow S = -\int_0^{1/T} d\tau \mathcal{L}_E$$

and the grand canonical partition function can be written (for QCD) as

$$Z(T, V, \mu) = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A^{\mu} \exp\{-\int_{0}^{1/T} dx_{0} \int_{V} d^{3}x(\mathcal{L}_{E} - \mu\mathcal{N})\},\$$

conserved net quark (baryon) number.

Additionally, (anti)periodic boundary conditions in [0, 1/T] are imposed for bosons (fermions)

 $A^{\mu}(0, \mathbf{x}) = A^{\mu}(1/T)$

In order to obtain Z for a field theory with Lagrangian \mathcal{L} one normally

where $\mathcal{N} \equiv \psi \gamma_0 \psi$ is the number density operator associated to the

$$(\mathbf{x}), \ \psi(0, \mathbf{x}) = -\psi(1/T, \mathbf{x})$$

QCD thermodynamics III

In order to solve these equations

- \Rightarrow Perturbative expansion
 - obtained.
- \Rightarrow Lattice QCD
- \checkmark Discretization in (1/T, V) space
- Contributions to Z are computed by random configurations of fields in the lattice
- Most of the results for $\mu = 0$ Y

 $\sim \alpha_S(T)$ small for large $T \longrightarrow$ bad convergence, but some results

First example: EoS

Naïve estimation:Let's fix $\mu = 0$, the pressure of an ideal gas (of massless particles) is proportional to the number of d.o.f: $P \propto NT^4$

TAE 2022 - Benasque

 $P_{\pi} \propto 3 \times T^4$; $P_{QGP} \propto (2 \times 2 \times 3 + 2 \times 8) \times T^4$

quarks

gluons

Perturbative calculations

Different orders in PT compared to lattice results

Convergence for very large temperature

Order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

TAE 2022 - Benasque

First order: discontinuity in the order parameter

Order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

TAE 2022 - Benasque

Second order: discontinuity in the derivative

Order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

TAE 2022 - Benasque

Cross-over: continuous function

<u>Chiral symmetry restoration</u>: for $m_q = 0$ chiral condensate is the order parameter

 $\langle 0|\bar{q}_L q_R|0\rangle \neq 0 \qquad \xrightarrow[T \to \infty]{} \quad \langle 0|\bar{q}_L q_R|0\rangle = 0$

QCD order parameters I

QCD lectures 20

QCD order parameters II

<u>Confinement</u>: for. $m_q \rightarrow \infty$ the order parameter is the potential

However...

When masses are taken into account the potential is screened even below T_c

TAE 2022 - Benasque

[Karsch, Laermann, Peikert 2001]

Light $\bar{q}q$ pair creation breaks the string

Physical quark masses

Two order parameters

TAE 2022 - Benasque

For physical masses, all results indicate a cross over

Quarkonia spectral functions

Naively, all bound states are destroyed in deconfinement. Quarkonia should then disappear in HIC [Matsui, Satz 1986]. The situation is, however, more complicated

Different quarkonia states melt at different temperatures

[some bound states survive transition]

Sequential suppression

A possible picture of hot QCD

TAE 2022 - Benasque

too ×perimenta

TAE 2022 - Benasque

High-densities/temperatures

□ In the early Universe

Core of neutron stars

L Heavy-ion collisions

too ×perimenta

TAE 2022 - Benasque

High-densities/temperatures

□ In the early Universe

Core of neutron stars

L Heavy-ion collisions

TAE 2022 - Benasque

Huge number of particles in central PbPb events at the LHC

Produce lage objects La Macroscopie in RCD Scale Collide heavy nuclei

(A possible) Time evolution of a HIC

TAE 2022 - Benasque

In contrast to usual HEP, time and distance are relevant variables in heavy-ion collisions **Building collectivity in extended (macroscopic) systems**

Saturation - Color Glass Condensate

TAE 2022 - Benasque

A picture for equilibration

Hydrodynamics
$$\partial_{\mu}T^{\mu\nu} = c$$

 $T^{\mu\nu} = (\epsilon + p)n^{\mu}n^{\nu} - pg^{\mu\nu} + (+ Equation of S)$

Far from equilibrium initial state needs to equilibrate fast (~1 fm or less)

Most of the theoretical progress in the last years:

- Viscosity corrections and consistency
- Fluctuations in initial conditions
- Emergence of hydro from kinetic eqs, holography, etc...

Viscosity conjections

+ initial time + freeze-out temperature

EoS — high temperature

()

Harmonics: the golden measurement

[simplified discussion]

Description of data and viscosity

QCD lectures 34

Quarkonia suppression

Simple intuitive picture [Matsui & Satz 1986]

- Potential screened at high-T
- Quarkonia suppressed
- Sequential suppression of excited states
- Quarkonia as a thermometer

TAE 2022 - Benasque

Dynamical picture:

▶ different effects:

screening / rescattering / recombination

Induced transition between quarkonia states

Quarkonia as an open quantum system

[Bambrilla, Soto, Escobedo, Vairo, Ghiglieri, Petreczky, Strickland, Blaizot, Rothkopf, Kaczmarek, Asakawa, Katz, Gossiaux, Kajimoto, Akamatsu, Borghini ...]

Jets in medium Zet grending Hard Scattering Parton Shower Color Structure + dentify leading behavior

TAE 2022 - Benasque

Jets are extended objects - ideal to study space-time evolution

Jet quenching

Particles with color are suppressed by interaction with the medium

Conclusions - lecture 2

QCD has a rich dynamical content

- New phases of matter at high energies/densities
 - energies

Heavy ion collisions are the experimental tools

richer accessible physics

QCD is the only sector in the Standard Model where studies of collectivity at the fundamental level are experimentally possible

Confinement and chiral symmetry breaking in vacuum Quark gluon plasma universal form of matter at high enough

However, QGP is only one of the manifestations of a wider and

