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This lecture
● please ask questions anytime!

○ I’ll ask some to you as well :)

● review the basics

● go into details in some examples

● state-of-the-art results from LHCb 2



Outline
● Introduction to flavour physics
● The LHCb detector

○ Run 1+2 detector
○ LHCb upgrade

● LHCb physics: 
○ rare decays
○ CPV
○ CKM
○ Semi-leptonic decays
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Flavour Physics
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The flavour of the SM particles

5

Fermions classified in

● 3 families: increasing 
mass 101 - 105 MeV !

● 2 types: electric 
charge 

○ up (+⅔), down (-½)
○ e (-1), neutrino (0)

→ 6 flavours of quarks 
and 6 of leptons

credit: UZH-Physik Institut



Quarks and hadrons
Quarks are subject to strong interactions (QCD) 
→ form hadrons: baryons and mesons
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credit: UZH-Physik Institut
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Quarks and hadrons
Quarks are subject to strong interactions (QCD) 
→ form hadrons: baryons and mesons

Other combinations?
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credit: UZH-Physik Institut

credit: W
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Quarks and hadrons
Quarks are also subject to weak 
interaction: can change flavour

● Heavy quarks decay into lighter ones, 
since enough energy is available
○ Lightest quarks are stable!

● Quarks form hadrons before decaying*   
→ observe hadron decays

→ need to understand QCD when 
studying weak decays

*top quark: decays before hadronising, due to very 
heavy mass 8credit: UZH-Physik Institut

mass



The β decay
Decay n → p at hadron level (d → u at quark level)

Responsible of radioactivity: 
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First observed in 1896 by Becquerel
Explained by Fermi in 1931



From light to heavy hadrons?
Light quarks cannot spontaneously turn into heavier ones, how can we study 
heavy quarks?
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From light to heavy hadrons?
Light quarks cannot spontaneously turn into heavier ones, how can we study 
heavy quarks?

11credit: ATLAS Experiment

http://www.youtube.com/watch?v=NhXMXiXOWAA


The GIM mechanism
Proposed in 1970 by Glashow, Iliopoulos and Maiani (GIM):

● motivated by suppression of KL → μ+μ- decays
● predicts existence of c quark (only u, d and s known then)
● loop decays are suppressed by cancellation of u and c contributions

12

https://doi.org/10.1103%2FPhysRevD.2.1285
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Observed in 1974 at SLAC and BNL: J/ψ (cc) particle  

https://doi.org/10.1103%2FPhysRevD.2.1285


The CKM matrix
Describes the strength of quark flavour-changing processes

● Cabibbo matrix in 1963 for 2 quark generations
● Only 1 free and real parameter: Cabibbo angle (θc) 
● Charge-Parity (CP) breaking not possible

d’, s’ are weak states while d, s are mass eigenstates 
14



The CKM matrix
Describes the strength of quark flavour-changing processes

● Cabibbo matrix in 1963 for 2 quark generations
● CPV observed for first time in KL → ππ decays (BNL, 1964)
● extended to 3 generations by Kobayashi and Masakawa in 1973

d’, s’, b’ are weak states while d, s, b are mass eigenstates 
15



The CKM matrix: parameters and CPV
Unitary matrix: VV⟊ = 1 → limits number of free parameters 

● N x N matrix: (N-1)2 free variables
○ ½ N x (N-1) real values → mixing angles
○ ½ (N-1) x (N-2) complex values → can cause CP asymmetry

● 2 x 2 matrix: 1 mixing angle (Cabibbo angle), no complex phases
● 3 x 3 matrix: 3 mixing angles and 1 CP-breaking complex phase

Motivation: CP breaking observed in Kaon decays

Prediction: existence 3rd generation, confirmed by b-quark observation 1976

16



The CKM matrix: values
No constraints from theory (only unitarity) → need to be measured
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CKM unitarity: weak universality
Unitarity constraint applied to diagonal terms:

meaning: all generations couple equally to weak bosons

Note: same applies to leptons

18



CKM unitarity: unitary triangles
Unitarity constraint applied to off-diagonal terms (i ≠ j):

interpreted as unitary (closed) triangles in the complex plane 

Test of the SM: sides and angles of the triangles can be measured 
independently → check that triangles are actually closed ! 19



Leptons
Similar structure to quarks, but not subject to 
strong force → no bound states

Flavour changes are also possible through weak 
interaction → PMNS matrix

Due to lack of strong and electric charge,  
neutrinos are very hard to detect

See dedicated Neutrino lectures
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LHCb: Large Hadron Collider Beauty experiment
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LHCb: Large Hadron Collider Beauty experiment

22

● > 900 authors and > 40 nationalities
● 87 institutes from 18 countries 

● Precision measurements heavy flavor physics
● Core physics: CPV and rare decays
● Much more: spectroscopy, QCD, heavy ions...



Experimental setup

23JINST 3 (2008) S08005

Distribution of produced b-quarks

Angular coverage: 2 ≤ η ≤ 5
η = − ln tan θ/2

https://cds.cern.ch/record/1129809


LHCb dataset
Total recorded luminosity ~9 fb-1:

● Run 1 (2010-2012) ~ 3 fb-1

● Run 2 (2015-2018) ~ 6 fb-1 

24

x2 b-quark production from 7 to 13 TeV pp collisions
→ around x4 b-hadrons in Run 2



b hadrons
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The beauty family:

Lightest b-hadrons decay to 2nd and 1st generation → long lifetimes

Large mass (5200 - 6000 MeV) allows many different decays:

● dominant decay: b → c ∝ Vcb
● suppressed: b → u ∝ Vub
● FCNC: b → s, d “rare decays” ∝ VtbVts/d

Large CP breaking expected in some decays

All b-hadron species produced at LHCb! [PRD100(2019)031102]

http://arxiv.org/abs/1902.06794


Experimental setup

26JINST 3 (2008) S08005

Typical decay signature

How much does Λb travel in the 
detector before decaying? βγ ~ 100

https://cds.cern.ch/record/1129809


Experimental setup

27JINST 3 (2008) S08005

Typical decay signature

How much does Λb travel in the 
detector before decaying? βγ ~ 100

  ELECTRONS
  FOTONS
  HADRONS
  MUONS

https://cds.cern.ch/record/1129809


Tracking system
Reconstruct trajectories of 
charged particles

Identify pp and b-decay vertex

Measure particle momentum 
from bending in magnetic field
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Δp / p = 0.5 - 1.0%
ΔIP = (15 +29/pT[GeV] ) μm



Particle identification system
● Ring Imaging Cherenkov Detectors (RICH)

○ RICH1: aerogel + C4F10 → p ∈ 2 - 60 GeV/c
○ RICH2: CF4 → p ∈ 17 - 100 GeV/c

● Goal: identify π±, K±, p

29

Kaon ID ~ 95 % for ~ 5 % 
π→K mis-id probability

for v > c/n
n = refractive index

Combine with p measurement 
from trackers ⇒ m!

LHCb-DP-2012-003



Particle identification usage
PID is crucial to separate exclusive final states
Recent example in Λb → pK-π+π- decays:

30

JHEP02(2018)098



Particle identification system
● Calorimeters: identify γ, π0, e±

● Sashlik technology

31

ΔE/EECAL = 1% + 10% / √
(E[GeV])

Electron ID ~90% for ~5% 
e→h mis-id probability



Particle identification system
● Calorimeters: identify γ, π0, e±

● Sashlik technology

32

ΔE/EECAL = 1% + 10% / √
(E[GeV])

Electron ID ~90% for ~5% 
e→h mis-id probability

Electromagnetic calorimeter



Particle identification system
● Muon chambers: identify μ± 

● Alternating layers of iron + MWPC

33
Muon chambers

Muon ID ~ 97% for 1-3% 
π→μ mis-id probability



The LHCb upgrade
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LHCb Upgrade: a quasi-new detector
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LHCb Upgrade

36

New VeloPix 
detector

New tracker 
detectors

New RICH 
detectors

Removal of 
SPD/PS, new 
electronics

Removal of M1, 
new electronics



LHCb Upgrade

37

New VeloPix 
detector

● 3.5mm to beam (5mm Run1/2)
● 41M pixels of 55x55 μm
● improved PV and IP resolutions

CERN-LHCC-2013-021

http://cds.cern.ch/record/1624070


LHCb Upgrade

38

● high-granularity silicon 
micro-strip planes

● X-U-V-X (±5º) geometry 
for x-y positioning

New tracker 
detectors

CERN-LHCC-2014-001

Z = 2485 mm

http://cds.cern.ch/record/1647400
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for x-y positioning

New tracker 
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Z = 2485 mm

http://cds.cern.ch/record/1647400


LHCb Upgrade

40

● Scintillating fibers 2.4m x 250μm
● 3x4 layers in X-U-V-X (±5º)
● higher granularity for higher 

occupancy

New tracker 
detectors

CERN-LHCC-2014-001

4835 m
m

http://cds.cern.ch/record/1647400


LHCb Upgrade

41

New RICH 
detectors

● Optimised optical system
● Higher photon yield and improved 

resolution 

CERN-LHCC-2013-022

http://cds.cern.ch/record/1624074


A trigger-less readout
● Instantaneous Lumi: 2 × 1033 cm−2s−1 

○ was 4 × 1032 in Run 2

● Hardware trigger rate limit (1 MHz) 
saturates fully hadronic modes

⇒ read full detector at 30 MHz and apply 
selections in software

42

J. Phys.: Conf. Ser. 878 012012

Run 2

https://doi.org/10.1088/1742-6596/878/1/012012


A trigger-less readout
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DAQ architecture

44

Hybrid architecture:

● HLT1: GPUs installed in 
EB servers 

● HLT2: CPUs in Event 
Filter Farm



HLT1
Core based on tracking:

● VELO: tracking, vertex reconstruction
● UT: tracking, p estimate, fake rejection
● SciFi: track reconstruction, 

momentum measurement 

PID from muon stations & Calo

Highly parallel tasks → exploit GPUs: 
Nvidia RTX A5000

45



HLT1 performance: tracking
Same performance at x5 luminosity: high efficiency, good δp, low fake rate 
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LHCB-FIGURE-2020-014

https://cds.cern.ch/record/2722327


HLT2

47

Full reconstruction of tracks and neutrals, and PID with offline-quality

LHCB-FIGURE-2022-005

https://cds.cern.ch/record/2810226/files/LHCB_FIGURE_2022_005.pdf


HLT2

48

Full reconstruction of tracks and neutrals, and PID with offline-quality

LHCB-FIGURE-2021-003LHCB-FIGURE-2022-005

https://cds.cern.ch/record/2773174
https://cds.cern.ch/record/2810226/files/LHCB_FIGURE_2022_005.pdf


HLT2: turbo model

49

Flexible persistence model:

● Turbo: signal only
● Selective: signal + selection of 

reconstructed objects 
● Complete: all reco’ed objects
● Raw event: detector hits

JINST 14 P04006

https://doi.org/10.1088/1748-0221/14/04/p04006


Commissioning and first data

50



51

F. Blanc @ICHEP22



First Run 3 data

52



HLT1 commissioning

53

● LHCb DAQ running in parallel to 
detector commissioning since July

● ~200 GPUs installed and HLT1 running 
in global partition

● Triggering on ECAL clusters @20 MHz!

● Next: include trackers when ready

C. Agapopoulou @ICHEP

https://cds.cern.ch/record/2815787/files/ichep_090722_hlt1_tracking.pdf


LHCb Physics
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b-hadron decays
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B mixing
Neutral B mesons can oscillate: Bq → B̅q or (b̅q) →(bq̅)

Oscillation frequency is faster in Bs system

In CPV measurements, critical to know if B has oscillated before decaying

56



Flavour tagging
Information from the rest of the event to → flavour of the signal b-meson

57

Tagging efficiency = fraction of 
events tagged 

Mis-tagging fraction = fraction of 
tagged events with wrong tag

Effects need to be calibrated and 
included in measurements



LHCb Physics: 
Rare Decays

58



Rare b-hadron decays
● Flavour Changing Neutral Currents only allowed at loop level in SM
● Sensitive to indirect effects of New Physics (NP) in loops
● Access to much larger scales than direct searches

59



Effective Hamiltonian approach
Model independent description in effective field theory [Buchalla et al.]:

Oi = 4-fermion operators, Ci = short distance, computed perturbatively       
Form factors needed to describe hadronization process

60

https://arxiv.org/abs/hep-ph/9512380


Effective Hamiltonian approach
Model independent description in effective field theory [Buchalla et al.]:

Oi = 4-fermion operators, Ci = short distance, computed perturbatively       
Form factors needed to describe hadronization process
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https://arxiv.org/abs/hep-ph/9512380


Effective Hamiltonian approach
Model independent description in effective field theory [Buchalla et al.]:

Oi = 4-fermion operators, Ci = short distance, computed perturbatively       
Form factors needed to describe hadronization process
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Wilson coefficients

https://arxiv.org/abs/hep-ph/9512380


Effective Hamiltonian approach
b → sll sensitivity to Wilson coefficients 
varies with dilepton invariant mass, q2 

→ measurements performed in various 
bins and combined in global fits

63

Wilson coefficients

q2 = (ml)
2



Branching ratios
Trend: b → sμ+μ- BR systematically lower 
than SM predictions

64

JHEP 06 (2014) 133

PRL 127 (2021) 151801

JHEP 11 (2016) 047

B0 → K*μ+μ-

Bs
0 → φμ+μ-

PRD 93 074501
JHEP 06 (2015) 115

Λ0
b → Λμ+μ-

https://arxiv.org/pdf/1403.8044v3.pdf
http://arxiv.org/abs/2105.14007
http://arxiv.org/abs/1606.04731
https://arxiv.org/abs/1602.01399
http://arxiv.org/abs/1503.07138


Angular observables
Range of observables sensitive to different WCs 

65

FL: H longitudinal polarisation

AFB: di-lepton 
forward-backward asymmetry

Si: CP-averaged observables

“Clean” basis: cancellation of Form Factors at leading order [Descotes-Genon et al.]

Bd → K*μ+μ-

[Altmannshofer et al.]

https://arxiv.org/abs/1207.2753
https://arxiv.org/abs/0811.1214


Angular observables
Fit decay angles using theory expression with free parameters

66



Angular analysis of B0 → K*µ+µ-

Results: angular parameters - compare them to theory predictions to test SM
Some deviations arise!

67

PRL 125 (2020) 011802

http://arxiv.org/abs/2003.04831


Angular analysis of B0 → K*µ+µ-

Extract values of Ci that explain the observed parameters in data:
Ci = Ci

SM + ΔCi 

68

PRL 125 (2020) 011802

2.7 - 3.3 σ preference for NP with negative C9
NP

http://arxiv.org/abs/2003.04831


Lepton Flavour Universality tests

69

Leptons of different species couple identically to electroweak bosons in SM 
→ Lepton Flavour Universality (LFU)

Measure ratio of same b → sll process with muons and electrons in final state:

Hadronic uncertainties cancel in ratio → very clean theory prediction

H = K+, K0*, K0
S, K

0+ …



Observable: 

Experimentally:

How do we measure LFU?

70

count in 
experiment

from simulation 
and calibration 

samples

Challenge: 
● e and μ efficiencies are 

very different
● hard to estimate 

absolute efficiencies

efficiencyevents

H = K+, K0*, K0
S, K

0+ …



Challenges: hardware trigger
ECAL occupancy > Muon one 
⇒ tighter thresholds for electrons:
● e pT > 2700/2400 MeV in 2012/2016
● μ pT > 1700/1800 MeV in 2012/2016

[LHCb-PUB-2014-046, 2019 JINST 14 P04013]

Mitigation: 
● events triggered independently of the 

signal (TIS)
● (hadron trigger)

71

Hadron 

TIS

Electron

https://cds.cern.ch/record/1970930?ln=en
http://arxiv.org/abs/arXiv:1812.10790


Challenges: resolution

72

by M. Borsato



Electrons radiate much more Bremsstrahlung 

Recovery procedure: match ECAL clusters to 
tracks before bending

Limitations: 
● miss some photons and add fake ones
● ECAL resolution worse than tracking

→ worse mass resolution for electron modes

Challenges: material interaction

73



Challenges: energy loss by Bremsstrahlung

74

V. Lisovskyi’s thesis



Challenges: recovering Bremsstrahlung

75

LHCb-ANA-2019-007



Exploit J/ψ modes to build double ratio to cancel systematic effects

LU well tested in J/ψ modes → stringent cross-check

How do we control the efficiencies?

76



Checking the efficiencies in data
Stringent cross-checks with B+ → J/ψ K+

● shows that even absolute electron and muon efficiencies are understood

constraint m(ll) to J/ψ mass → strong improvement of mass resolution 77

Nature Physics 18, (2022) 
277-282

http://arxiv.org/abs/2103.11769
http://arxiv.org/abs/2103.11769


Checking the efficiencies in data
Check phase-space dependency: trends and B+ → ψ(2S) K+ decays

Effect of simulation corrections is small thanks to the double ratio:
● RK: (+3 ± 1)%
● RJ/ψ: 20%

78

Nature Physics 18, (2022) 
277-282

http://arxiv.org/abs/2103.11769
http://arxiv.org/abs/2103.11769


RK with full LHCb data
Measurement in 1.1 < q2

 < 6.0 GeV2 with Run 1+2 datasets
RK from simultaneous fit to B+ → K+μ+μ- and B+ → K+e+e- candidates

Tension with SM at 0.10% (3.1σ) 79

Nature Physics 18, (2022) 
277-282

N ~ 3850 N ~ 1640

most precise LFU 
measurement in 

b → sll!

http://arxiv.org/abs/2103.11769
http://arxiv.org/abs/2103.11769


Overview of LHCb LFU measurements
Working on final results with full Run 2 data

Unified analysis of RK and RK* ongoing
● Final Run 1 + 2 results
● Deeper understanding LFU
● High priority for collaboration

Updates and new measurements:
● RpK full Run 1+2
● Rφ, RKππ, etc.

80

JHEP 08 (2017) 055

JHEP 05 (2020) 040
PRL 128, 191802

Nature Physics 18, 
(2022) 277-282

http://arxiv.org/pdf/1705.05802
http://arxiv.org/abs/1912.08139
https://arxiv.org/abs/2110.09501
http://arxiv.org/abs/2103.11769
http://arxiv.org/abs/2103.11769


Results from Belle

81

Results compatible with SM and LHCb measurements
Statistically limited → looking forward Belle II results!

JHEP 03 (2021) 105

Weighted average of charged and neutral modes in various q2 bins: 

PRL 126, 161801 (2021)

https://arxiv.org/abs/1908.01848
https://arxiv.org/pdf/1904.02440.pdf


Coherent set of anomalies

82

Eur. Phys. J. C 81 (2021)

Extract Ci from global fit to all measured 
observables in b → sll decays

Preference for NP in C9 or C10 can reach > 5σ 

Interesting hint of NP to be pursued in next years!

https://arxiv.org/abs/2103.13370


LHCb Physics:
CPV

83



CPV sources
● Direct CPV in the decay: A(B → f) ≠ A( B̅ → f̅)

● CPV in the oscillations: A(B → B̅) ≠ A(B̅ → B)
○ need to know flavour at production
○ study time evolution

● CPV in the mixing between the two
84



Direct CPV in B(s) → K+π-

85

PRD98(2018)032004 826

https://arxiv.org/abs/1805.06759


Direct CPV in B(s) → K+π-

86

PRD98(2018)032004 826

Production asymmetry in pp collisions Detection asymmetry in detectors: 
interaction + magnetic field 

https://arxiv.org/abs/1805.06759


Direct CPV in B(s) → K+π-

87

Measurement of ACP in B(s) → Kπ and relation as test of the SM 

Most precise measurement 

Compatible with 0 at 2σ 

PRD98(2018)032004 826

https://arxiv.org/abs/1805.06759


Time-dependent CPV in Bs → φγ
Decay time distribution for decay to CP eigenstate:

88

Phys. Rev. Lett. 123 (2019) 081802

Require knowledge of the Bs 
flavour at production

Same for Bs and B̅s

● C is related to direct CPV
● AΔ from mixing and SCP related to the photon polarisation
● In SM: photon is left-handed 

Observation of right-handed photons would be a clear sign of NP!

https://cds.cern.ch/record/2666699?ln=es


Photon polarization in Bs → φγ
Fit decay time of decays tagged as Bs, anti-Bs and untagged :

89

Untagged

Phys. Rev. Lett. 123 (2019) 081802

https://cds.cern.ch/record/2666699?ln=es


CPV 

90

γ = (65.4+3.8
-4.2)°

CPV in Charm decays
D0 → h+h-

ΔACP = (-0.154 ± 0.029)%

PRL 122 (2019) 211803, 
LHCB-PAPER-2022-024 (in preparation)

CKM angle γ

JHEP 12 (2021) 141

http://arxiv.org/abs/1903.08726
https://arxiv.org/abs/2110.02350


LHCb Physics:
Spectroscopy
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Spectroscopy

92

LHCb-FIG-2021-001

https://cds.cern.ch/record/2749030


Standard hadrons
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Challenge: model the spectrum to describe the data

http://arxiv.org/abs/2001.00851
http://arxiv.org/abs/2002.05112


Exotic hadrons

94

Five-quark states: pentaquarks
Λb → pK-J/ψ 

PRL 122 (2019) 222001

http://arxiv.org/abs/1904.03947


Physics prospects

95



Prospects for LU tests in b → clν decays

R(D)-R(D*) ongoing with current dataset

Also measurements with other b hadrons:

● σR(Ds) < 6% (2.5%) and R(D*(*)
s)

● σR(Λc) < 4% (2.5%) and R(pp) (b → ulν) 96

arXiv:1808.08865

https://arxiv.org/abs/1808.08865


Prospects for Rare Decays

97

Run 3 Upgrade IIRun 4

-- Run 3, 3σ 
  Up II, 3σ 

arXiv:1808.08865

● updated and completely new LFU and angular observables
○ access electron modes in several b → sll decays
○ access b → dll decays too!

https://arxiv.org/abs/1808.08865


Prospects for CKM measurements

98

arXiv:1808.08865

https://arxiv.org/abs/1808.08865


Conclusions
LHCb studies the flavour structure of fundamental particles

Very particular flavour structure in SM described by CKM matrix: NP models 
don’t need to follow this → deviations from pattern = sign of NP

Rich field with variety of measurements and observables accessible:

● branching fractions
● angular distributions
● (time-dependent) CP asymmetries
● ratios of observables, eg Lepton Universality

Very active field of research with continuous progress 99



Thank you!

100

Questions?


