
Problems - Cosmology, TAE 2022
David Alonso - University of Oxford

Problem 1: Photon geodesics

The trajectory and energy of a photon propagating through the Universe will be affected by perturba-
tions in the metric. For a perturbed FRW in conformal coordinates, and using the Newtonian gauge,
i.e.

dτ2 = a2(η)
[
(1 + 2ψ)dη2 − (1− 2ϕ)|dx|2

]
, (1)

show that the redshift of a photon propagating from a source with velocity vs to an observer with
velocity v0 is given by

1 + z =
1

a

[
1− ψ + ψ0 + n̂ · (vs − v0) +

∫ η

η0

dη′ (ϕ′ + ψ′)

]
, (2)

where n̂ is a unit vector along the line of sight, and the subscript 0 denotes quantities evaluated at the
observer. What is the physical interpretation of the different terms entering this equation?

Show also that the photon follows a trajectory

x(η) = n̂

∫ η0

η

dη′ (1 + ϕ+ ψ)−
∫ η0

η

dη′(η′ − η)∇⊥(ϕ+ ψ). (3)

Hints:

• Start by writing down the geodesic equation for the photon 4-momentum pµ = dxµ/dλ:

dpµ

dλ
+ Γµ

νσp
νpσ = 0, (4)

as well as the null condition
pµpνgµν = 0 (5)

to first order in the perturbations.

• Change variables to the directional vector ê ≡ p/|p|2, and the comoving energy ϵ ≡ a pµu
µ
c ,

where uµc = a−1(1 − ψ)δµ0 is the 4-velocity of an observer with constant comoving coordinates
(why?). Integrate the resulting two equations to find ϵ(η) and x(η) along the photon trajectory.

• Noting that the frequency measured by an observer with 4-velocity uµ is hP ν = pµuµ, write the
4-velocity of source and observer as uµq = a−1(1 − ψ,v) (why?), and use the equation for ϵ to
obtain Eq. 2, where the redshift is defined as 1 + z ≡ (uµs pµ)/(u

µ
0pµ).



Problem 2: Perturbations during radiation domination

In the lectures we showed that the Newtonian potential ψ stays constant during matter domination.
Let’s now examine the solution during radiation domination. Solve Einstein’s equations in the New-
tonian gauge during radiation domination to show that the gravitational potential evolves as

ψ(k, η) ∝ j1(cskη)

cskη
, (6)

where cs = 1/
√
3 is the sound speed for radiation, and j1(x) is the spherical Bessel function of the

first kind:

j1(x) =
sinx− x cosx

x2
. (7)

What is the behaviour on super-horizon and sub-horizon scales?

Hints:

• Recall Einstein’s equations for a perfect fluid in the Newtonian gauge:

k2ψ + 3H(ψ′ +Hψ) = −4πGa2 ρ̄ δ, (8)

k2(ψ′ +Hψ) = 4πGa2 (ρ̄+ p̄)θ, (9)

ψ′′ + 3Hψ′ + (2H′ +H2)ψ = 4πGa2 c2sρ̄ δ. (10)

Combine two of these to write an equation involving ψ alone.

• Use the fact that a ∝ t1/2 ∝ η during radiation domination to simplify this equation.

• Solve the resulting equation by noting that the spherical Bessel functions satisfy the equation

x2j′′n + 2xj′n + (x2 − n(n+ 1))jn = 0. (11)
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Problem 3: Curvature perturbations

In the lectures we argued that ψ stays constant on super-horizon scales as long as the equation of state
doesn’t vary. Show that the following quantity (the “curvature perturbation”) does stay constant even
if the equation of state varies:

R ≡ −ϕ− H(ψ′ +Hϕ)
4πGa2(ρ̄+ p̄)

. (12)

Hints:

• Use Einstein’s equations (Eqs. 8-10) to write R in terms of ϕ and δ alone, on super-horizon
scales (k ≪ H), as

R ≃ −ϕ− ρ̄δ

3(ρ̄+ p̄)
. (13)

• Remember that the continuity equation reads:

δ′ = −(1 + w)(θ − 3ϕ′)− 3H(c2s − w)δ. (14)

Show that the term involving θ can be dropped (why?), and use Eq. 13 to replace ψ with R.
This gives you an ODE for R.

• Use the continuity equation for the background (ρ̄′ = −3H(ρ̄+ p̄)) to simplify this equation, and
show that

R′ = − Hρ̄
ρ̄+ p̄

(
δp

ρ̄
− p̄′

ρ̄′
δ

)
. (15)

Can we say that the right hand side is zero, thus proving what we wanted?
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Problem 4: From 3D to 2D.

Consider a quantity defined on the sphere f(n̂) in terms of a radial lightcone integral over a three-
dimensional quantity F (x, η):

f(n̂) =

∫ η0

dη qf (χ)F (χn̂, η), (16)

where qf (χ) is a radial kernel. Assume now that the three-dimensional quantity is linearly related to
the primordial curvature perturbation Rk through a transfer function TF (k, η):

Fk(η) = TF (k, η)Rk. (17)

Show that the harmonic coefficients of f are then related to Rk through:

fℓm =

∫
dk

2π2
k2 ∆f

ℓ (k)i
ℓ

∫
dn̂k Y

∗
ℓm(n̂k)Rk, (18)

where n̂k ≡ k/k, and

∆f
ℓ (k) =

∫
dχ qv(χ)TF (k, η) jℓ(kχ). (19)

Then, show that the angular power spectrum of f is related to the primordial power spectrum ∆2
R(k)

through

Cf
ℓ =

2

π

∫
dk

k
|∆f

ℓ (k)|
2 ∆2

R(k). (20)

Hints:

• Use the plane-wave expansion to relate the harmonic coefficients of f to the Fourier coefficients
of F :

eik·x = 4π
∑
ℓm

iℓ jℓ(kχ)Yℓm(n̂)Y ∗
ℓm(n̂k), (21)

where jℓ(x) is the spherical Bessel function of order ℓ.

• Remember the definition of the primordial power spectrum

⟨R∗
kRk′⟩ ≡ 2π2

k3
∆2

R(k) (2π)3δD(k− k′). (22)
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Problem 5: The growth factor

The evolution equation for the overdensity of non-relativistic, pressureless matter, neglecting all per-
turbations in any other species can be written, in the Newtonian limit, as:

δ̈ + 2Hδ̇ − 4πGρM (t) δ = 0,

where H = ȧ/a is the expansion rate and ρM is the non-relativistic matter density.

1. Change the time variable from t to a to change the form of this equation to:

δ′′ +

(
H ′

H
+

3

a

)
δ′ − 3

2

H2
0ΩM

H2 a5
δ = 0, (23)

where f ′ ≡ df/da and ΩM and H0 are the matter parameter and expansion rate today.

2. Show that, for a matter dominated universe, a possible solution to this equation is δ1 = H.
For this you’ll need to use the fact that in this case H2 ≃ H2

0ΩM/a
3. Is this a growing-mode

solution?

3. Consider the more general case where H2 = H2
0

(
ΩM/a

3 +
∑

i Ωi a
−3(1+wi)

)
. For what values of

the equation of state parameter wi is δ1 = H still a solution? What components do these values
correspond to?

4. For a second-order equation with two independent solutions δ1 and δ2 the WronskianW is defined
as W ≡ δ′1δ2 − δ1δ

′
2. Prove that for equation 23 the Wronskian satisfies

W ′

W
= −

(
H ′

H
+

3

a

)
. (24)

Integrate this equation to show that W = C/(a3H), where C is an integration constant.

5. Using the previous result and under the ansatz δ2(a) = δ1(a) g(a) prove that the second solution
is

δ2 = −C H(a)

∫ a

0

da′

[a′H(a′)]3
. (25)

6. We know that at early times (a << 1), during matter domination, δ = a. Find the value of the
integration constant C that gives this normalization.
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