Problems - Cosmology, TAE 2022

David Alonso - University of Oxford

Problem 1: Photon geodesics

The trajectory and energy of a photon propagating through the Universe will be affected by perturba-
tions in the metric. For a perturbed FRW in conformal coordinates, and using the Newtonian gauge,
ie.

dr® = a®(n) [(1+2¢)dn” — (1 - 2¢)|dx|] , (1)

show that the redshift of a photon propagating from a source with velocity vy to an observer with
velocity vq is given by
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where 10 is a unit vector along the line of sight, and the subscript ¢ denotes quantities evaluated at the
observer. What is the physical interpretation of the different terms entering this equation?
Show also that the photon follows a trajectory

sy =a [ dif (L4 6+ 4) — / " - )6+ ). (3)

Hints:
e Start by writing down the geodesic equation for the photon 4-momentum p* = dz# /d\:
— + I, p"p? =0, (4)
as well as the null condition
pupyg;w =0 (5)
to first order in the perturbations.

e Change variables to the directional vector & = p/|p|?, and the comoving energy ¢ = a Puut,
where u# = a=1(1 — )8} is the 4-velocity of an observer with constant comoving coordinates
(why?). Integrate the resulting two equations to find €(n) and x(n) along the photon trajectory.

e Noting that the frequency measured by an observer with 4-velocity v is hpv = ptu,,, write the
4-velocity of source and observer as uf = a=t(1 —,v) (why?), and use the equation for € to
obtain Eq. 2, where the redshift is defined as 1+ z = (up,)/(utp,.)-



Problem 2: Perturbations during radiation domination

In the lectures we showed that the Newtonian potential ¢ stays constant during matter domination.
Let’s now examine the solution during radiation domination. Solve Einstein’s equations in the New-
tonian gauge during radiation domination to show that the gravitational potential evolves as

Ji(eskn)
Y(k,n) o< Wa (6)

where ¢, = 1/4/3 is the sound speed for radiation, and j;(x) is the spherical Bessel function of the
first kind:

sinx — xrcosx

3 (7)

What is the behaviour on super-horizon and sub-horizon scales?

Ji(z) = .

Hints:

e Recall Einstein’s equations for a perfect fluid in the Newtonian gauge:

k2 + 3H(W + Hy) = —4nGa? p o, (8)
k(4 + Hip) = 4nGa’ (p + )9, (9)
O+ 3HY + (2H + H?)Y = 4nGa® 2pé. (10)

Combine two of these to write an equation involving v alone.
e Use the fact that a o t'/2 & n during radiation domination to simplify this equation.

e Solve the resulting equation by noting that the spherical Bessel functions satisfy the equation

22! + 225! + (22 —n(n+1))j, = 0. (11)



Problem 3: Curvature perturbations

In the lectures we argued that 1 stays constant on super-horizon scales as long as the equation of state
doesn’t vary. Show that the following quantity (the “curvature perturbation”) does stay constant even
if the equation of state varies:

_ . HE +H)
- 4rGa(p+p)’ (12)

Hints:

e Use Einstein’s equations (Eqs. 8-10) to write R in terms of ¢ and § alone, on super-horizon
scales (k < H), as

po
i 3(p+p) (13)
e Remember that the continuity equation reads:
&' =—(1+w)(0—3¢") — 3H(c2 — w)d. (14)

Show that the term involving 6 can be dropped (why?), and use Eq. 13 to replace ¢ with R.
This gives you an ODE for R.

e Use the continuity equation for the background (p" = —3H(p+ p)) to simplify this equation, and

show that s ,

Can we say that the right hand side is zero, thus proving what we wanted?



Problem 4: From 3D to 2D.

Consider a quantity defined on the sphere f(n) in terms of a radial lightcone integral over a three-
dimensional quantity F(x,7):

o) = [ " i ar(COF (i), (16)

where g¢(x) is a radial kernel. Assume now that the three-dimensional quantity is linearly related to
the primordial curvature perturbation Ry through a transfer function Tr(k,n):

Fi(n) = Tr(k,n) Ri. (17)

Show that the harmonic coefficients of f are then related to Ry through:

dk , e
Fom :/ﬁkQ AJ (k)i /dnknm(nk)nk, (18)

where ny = k/k, and

A1) = [ dxa(0 Tk o). (19)

Then, show that the angular power spectrum of f is related to the primordial power spectrum A%(k)
through

2 [dk
Cf == | S IA[(R) AR (k). (20)
Hints:
e Use the plane-wave expansion to relate the harmonic coefficients of f to the Fourier coefficients
of F: A
™ = dm Y it jo(kx) Yom (B) Y, (), (21)
m

where jy() is the spherical Bessel function of order /.
e Remember the definition of the primordial power spectrum
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Problem 5: The growth factor

The evolution equation for the overdensity of non-relativistic, pressureless matter, neglecting all per-
turbations in any other species can be written, in the Newtonian limit, as:

6+ 2HS — 4nGppr(t) 6 = 0,
where H = a/a is the expansion rate and pjys is the non-relativistic matter density.

1. Change the time variable from ¢ to a to change the form of this equation to:

H 3 3 HZO
v+ (T e)0 S ae =0 23)

where f' = df /da and Q,; and Hy are the matter parameter and expansion rate today.

2. Show that, for a matter dominated universe, a possible solution to this equation is 6; = H.
For this you'll need to use the fact that in this case H? ~ HZQy;/a3. Is this a growing-mode
solution?

3. Consider the more general case where H? = Hg (Qa/a® + Y, a_?’(l‘““i)). For what values of
the equation of state parameter w; is §; = H still a solution? What components do these values
correspond to?

4. For a second-order equation with two independent solutions d; and > the Wronskian W is defined
as W = 6102 — §165. Prove that for equation 23 the Wronskian satisfies

) o

Integrate this equation to show that W = C/(a® H), where C' is an integration constant.

5. Using the previous result and under the ansatz dz(a) = d1(a) g(a) prove that the second solution

is ,
da

5y = —C H(a) /O TRt (25)

6. We know that at early times (a << 1), during matter domination, § = a. Find the value of the
integration constant C' that gives this normalization.



