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Cosmology:
“Study of the origin, evolution, and fate 
of the Universe on large scales”

- Extreme physical systems
(large scales, high-energies)

- Fundamental physics problems:
* Dark matter
* Dark energy
* Inflation

- Data-driven science since ~2000
Confronted with astrophysical 
questions more and more often.
We dabble in astrophysics!
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Cosmology
Lesson 1: background cosmology and Newtonian perturbations
a) Homogeneous cosmology. The FRW metric. Distances and redshift. The Friedman Equation.
b) Newtonian perturbations. The perturbation equations. Linear theory. Jeans equation and growth.
c) Relativistic perturbations. Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.

Lesson 2: Inflation
a) Inflation. The curvature and horizon problems. Scalar fields. Slow roll.
b) Perturbations from inflation. Inflationary PT. Random fields. The primordial power spectrum.

Lesson 3: cosmological probes of structure
a) The CMB. Recombination. Temperature anisotropies. Scattering and polarization.
b) The matter power spectrum. The linear power spectrum. Non-linearities
c) Gravitational lensing. Geodesics. Galaxy lensing. CMB lensing.

Lecture notes: https://www.overleaf.com/read/gdndjchkksnq 
Books:

- Mukhanov: “Physical foundations of cosmology”
- Dodelson: “Modern cosmology”
- Mo, van den Bosch & White: “Galaxy formation and evolution”

https://www.overleaf.com/read/gdndjchkksnq
https://www.cambridge.org/core/books/physical-foundations-of-cosmology/45E9AA7382874E52BA4CC6862C505EAF
https://www.elsevier.com/books/modern-cosmology/dodelson/978-0-12-815948-4
https://www.cambridge.org/core/books/galaxy-formation-and-evolution/E236D9F26B797202BCA28637BF17E75F
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The cosmological principle:
“On sufficiently large scales, the Universe is homogeneous and isotropic”

In math: on large scales the Universe has maximally-symmetric time slices.

Using comoving coordinates:

Radial comoving distanceScale factor
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The cosmological principle:
“On sufficiently large scales, the Universe is homogeneous and isotropic”

In math: on large scales the Universe has maximally-symmetric time slices.

Using comoving coordinates:

Conformal time
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Photon propagation in an expanding Universe.
Geodesic equation:

For 𝜇=0:
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Photon propagation in an expanding Universe.
Geodesic equation:

For 𝜇=0:

For photons d𝜏2=0, which implies:

Therefore:

Integrating:
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Photon propagation in an expanding Universe.
Geodesic equation:

For 𝜇=0:

For photons d𝜏2=0, which implies:

Therefore:

Integrating:

Defining redshift:

Relation to scale factor:
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Expansion rate



Radial photon geodesics:
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Radial photon geodesics:

Standard rulers:

𝛿𝜃 𝛿s
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Radial photon geodesics:

Standard rulers:

Standard candles:

𝛿𝜃 𝛿s

F L
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Ideal fluid:

Fluid velocity. In comoving coords: 

Pressure in comoving frame:

Energy density in comoving frame:

In comoving coords:                                                                                            

Discards heat conduction, shear and bulk viscosity.
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- With 𝜈=0, energy conservation
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Ideal fluid:

Energy-momentum conservation:
- Holds for any non-interacting species
- And for the overall fluid
- With 𝜈=0, energy conservation

Equation of state:

- Non-relativistic matter (dust): 
 

- Relativistic matter (radiation):
 

- Cosmological constant (vacuum): 

dilution

dilution + redshifting
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Ideal fluid:

Energy-momentum conservation:
- Holds for any non-interacting species
- And for the overall fluid
- With 𝜈=0, energy conservation

Equation of state:

- Non-relativistic matter (dust): 
 

- Relativistic matter (radiation):
 

- Cosmological constant (vacuum): 

Natural scenario:
- R dominates at early times
- Then M takes over
- Finally 𝛬 dominates over everything else.

dilution

dilution + redshifting
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- Equation analogous to expansion of a gas in Newtonian gravity.

- Expansion (or “Hubble”) rate:
 

Later we will also use:
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- Critical density: 
 

- Cosmological parameters:
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- Equation analogous to expansion of a gas in Newtonian gravity.

- Expansion (or “Hubble”) rate:
 

- Critical density: 
 

- Cosmological parameters:
 

- Using energy conservation, Friedman eq. reads:

- Specific solutions:
Radiation domination: 
Matter domination:
Dark-energy domination:

Later we will also use:

Since k~0, 𝜌tot ~ 𝜌c

Lesson 1 a) Homogeneous cosmology
The (0,0) component of the Einstein equations yields the 1st Friedmann eq.:

“de-Sitter” Universe



The spatial components lead to 2nd Friedmann eq.:

- Not independent of 1st Eq. + conservation of energy.

- Interesting consequence: 
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Background cosmology data:
- BAO (standard ruler)
- SNe (standard candles)
- BBN (baryon abundance)
- TCMB (from CMB spectrum)
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Background cosmology data:
- BAO (standard ruler)
- SNe (standard candles)
- BBN (baryon abundance)
- TCMB (from CMB spectrum)
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Credit: Zhao et al. 2012
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https://arxiv.org/abs/1211.1677


Credit: Zhao et al. 2012

Questions:
- How does background expansion affect structure 

formation? Can we constrain DM/DE from it?
- What were the seeds of this structure? How were 

they generated?
- At what scales is the CP satisfied?

Lesson 1 b) Newtonian perturbations

https://arxiv.org/abs/1211.1677


Newtonian perturbation theory:
- Simplified treatment that forgoes all complications associated with GR.
- Idea: perturbations in non-relativistic fluid in an expanding background.
- Not valid when

- Perturbations in relativistic fluid (e.g. radiation at early times).
- Scales comparable to the horizon.

- Good approximation when studying structure at late times on most scales!

Lesson 1 b) Newtonian perturbations



Newtonian fluid characterised by a density              and velocity field             in Eulerian coordinates r.

Evolution governed by 2 equations of motion:
- Conservation of mass (continuity eq.):

- 2nd Newton’s law (Euler eq.):
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Newtonian fluid characterised by a density              and velocity field             in Eulerian coordinates r.

Evolution governed by 2 equations of motion:
- Conservation of mass (continuity eq.):

- 2nd Newton’s law (Euler eq.):

Relation between density and gravity (Poisson’s eq.):

Relation between pressure and density (eq. of state):

Sound speed
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Introducing background expansion:
1. Change to comoving coordinates
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Introducing background expansion:
1. Change to comoving coordinates

2. Split fields into background and perturbations:
 
 
 
Background follows Friedmann eqs.
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Introducing background expansion:
1. Change to comoving coordinates

2. Split fields into background and perturbations:
 
 
 
Background follows Friedmann eqs.

3. Substitute and isolate contribution from perturbations:
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In comoving coords we can now take advantage of translational invariance. Fourier transform:

Makes gradients easier:
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Consider small perturbations and linearise. Keep only terms linear in 𝛿, v, and 𝜙
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Consider small perturbations and linearise. Keep only terms linear in 𝛿, v, and 𝜙

Vorticity
Split Euler equation into longitudinal and transverse modes:

Gradient-like Curl-like

Lesson 1 b) Newtonian perturbations



Consider small perturbations and linearise. Keep only terms linear in 𝛿, v, and 𝜙

Vorticity
Split Euler equation into longitudinal and transverse modes:

No source for transverse modes at linear level:

We can disregard transverse modes and focus only on v||
Non-linear evolution will create vorticity.

Gradient-like Curl-like
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Jeans equation
Take divergence of Euler eq. and substitute Poisson eq.
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Jeans equation
Take divergence of Euler eq. and substitute Poisson eq.
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Jeans equation
Take divergence of Euler eq. and substitute Poisson eq.

Finally, sub in continuity eq.
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Jeans equation
Take divergence of Euler eq. and substitute Poisson eq., sub in continuity eq.

Jeans scale                               separates behaviour into two regimes:

1. Small scales (k >> kJ)

?? ??
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Jeans equation
Take divergence of Euler eq. and substitute Poisson eq., sub in continuity eq.

Jeans scale                               separates behaviour into two regimes:

1. Small scales (k >> kJ)

Damped Oscillations

Pressure waves!

Lesson 1 b) Newtonian perturbations

Remember this!!



Jeans equation
Take divergence of Euler eq. and substitute Poisson eq., sub in continuity eq.

Jeans scale                               separates behaviour into two regimes:

1. Small scales (k >> kJ)

2. Large scales or pressureless:

Scale-independent growth!
Solutions in the form:

Growing mode Decaying mode
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Jeans equation
Take divergence of Euler eq. and substitute Poisson eq., sub in continuity eq.

Jeans scale                               separates behaviour into two regimes:

1. Small scales (k >> kJ)

2. Large scales or pressureless:

Scale-independent growth!
Solutions in the form:

Growing mode Decaying mode

Lesson 1 b) Newtonian perturbations



Jeans equation
Examples:

1. Matter domination:

Solution:

Lesson 1 b) Newtonian perturbations



Jeans equation
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1. Matter domination:

Solution: 𝛿 grows like 𝒶
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Jeans equation
Examples:

1. Matter domination:

Solution:

2. 𝛬 domination:

Solution: 

𝛿 grows like 𝒶

𝛿 stalls
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Jeans equation
Examples:

1. Matter domination:

Solution:

2. 𝛬 domination:

Solution: 

3. Radiation domination (Meszaros solution):

𝛿 grows like 𝒶

𝛿 stalls

𝛿 also stalls
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Gravitational potential decays at early and late times, and stays constant during matter domination.
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Density fluctuations will perturb the FRW metric (and vice-versa)!
Problem: freedom to choose coordinates (no preferred frame, unlike in FRW).
                 General coordinate transformations can cause fictitious perturbations.
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Density fluctuations will perturb the FRW metric (and vice-versa)!
Problem: freedom to choose coordinates (no preferred frame, unlike in FRW).
                 General coordinate transformations can cause fictitious perturbations.
Relativistic PT requires a mathematically arid introduction.
We’ll skip most of it for brevity, and only report the main results.
Check the notes!

In principle 10 
perturbative d.o.f.s

But 4 of them can be 
cancelled by coordinate 
transformationsResult: 6 real perturbative d.o.f.s

- 2 scalar
- 2 vector
- 2 tensor

Defined wrt SO(3) (symmetry group of FRW background).
They evolve independently

These mostly decay
These are very interesting. GWs!
Unfortunately we won’t have time to cover them
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The conformal Newtonian gauge
With a wise choice of coordinates, we can express general scalar perturbations as:

𝜙 and 𝜓 are closely related to the usual Newtonian potential. 
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The conformal Newtonian gauge
With a wise choice of coordinates, we can express general scalar perturbations as:

𝜙 and 𝜓 are closely related to the usual Newtonian potential. 

Important notes: 
- We use conformal time because it makes life simpler.
- Careful when drawing physical conclusions!

Gauge-dependent results for non-observable quantities.
- Multitude of other gauges out there. Simpler equations for specific cases.
- Einstein’s equations for these perturbations:

a) Linearised!
b) Even so, tedious calculation. Worth doing at least once in your life!
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The conformal Newtonian gauge
The result is:
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The conformal Newtonian gauge
Finding Einstein’s equations for a perturbed FRW is lengthy (but worth doing once in your life!).
The result is:

This looks like Poisson’s equation + relativistic corrections. If Tij is diagonal, 𝜙=𝜓
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Perturbing T𝜇𝜈
In the background
A spatial component will be already a perturbation. The time component is fixed by normalisation:
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Perturbing T𝜇𝜈
In the background
A spatial component will be already a perturbation. The time component is fixed by normalisation:

This yields:

where v is a pure gradient.

Diagonal! 𝜓 = 𝜙
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Perturbing T𝜇𝜈
In the background
A spatial component will be already a perturbation. The time component is fixed by normalisation:

This yields:

where v is a pure gradient.

Back to Einstein eq. and into Fourier space:
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Example: Einstein deSitter

Matter domination: 

Scale-independent growth
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Example: Einstein deSitter

Matter domination: 

Scale-independent growth

Potential stays constant (as we 
found in Newtonian case)
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Example: Einstein deSitter

Matter domination: 

Scale-independent growth

𝛿 grows like 𝒶 (as in Newtonian PT)
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Example: Einstein deSitter

Matter domination: 

Scale-independent growth

𝛿 grows like 𝒶 (as in Newtonian PT) + relativistic horizon-sized correction
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Example: Einstein deSitter

Matter domination: 

Scale-independent growth

𝛿 grows like 𝒶 (as in Newtonian PT) + relativistic horizon-sized correction

These actually depend 
on the gauge!
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General behavior

Where:
-        ~  sound horizon ~ horizon (e.g. cs

2=⅓ for radiation).

-          is a slowly-varying (almost constant) function

-          is a decaying amplitude
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General behavior

Note that 𝜓 may vary on large scales in between epochs (e.g. radiation to matter domination).
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General behavior

Note that 𝜓 may vary on large scales in between epochs (e.g. radiation to matter domination).

However, the following quantity (“curvature perturbation”), is always constant on superhorizon modes:
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Energy-momentum conservation

In the presence of perturbations,                         yields Relativistic continuity eq.

Relativistic Euler eq.
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Energy-momentum conservation

In the presence of perturbations,                         yields Relativistic continuity eq.

Relativistic Euler eq.

Reminder: these hold for the total T𝜇𝜈, or for each independent component.
- When applied to the total fluid, these do not contain more information than the Einstein eqs.
- Additional information when applied to independent species.
- In the presence of interactions, momentum transfer terms must be added.

(E.g. radiation-baryons before decoupling).

Lesson 1 c) Relativistic perturbations
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Why inflation?
The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past.
This is problematic when confronted with observations.
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Why inflation?
The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past.
This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Lesson 2 a) Inflation

The lower limit converges if                with 𝛼<1.
During radiation domination 𝛼=1/2.



Why inflation?
The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past.
This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Then, the causal horizon when the CMB was emitted (“photon decoupling”) is:
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Why inflation?
The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past.
This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Then, the causal horizon when the CMB was emitted (“photon decoupling”) is:

However, the distance to the last-scattering surface is:

So the horizon subtends an angle:

Lesson 2 a) Inflation

𝜒H

𝜒LSS

𝜃H



Why inflation?
The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past.
This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Lesson 2 a) Inflation

Why do so many causally 
disconnected patches have 
the same temperature 
(within 10-5)?



Why inflation?
The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past.
This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

We can solve this if there was an epoch before rad. dom. with                and 𝛼>1.
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Why inflation?
The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past.
This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

We can solve this if there was an epoch before rad. dom. with                and 𝛼>1.

But 𝛼>1 means acceleration! This violates the Strong Energy Principle, and involves some exotic fluid.
Can we find more justification for something this bizarre?
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Why inflation?
The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past.
This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Secondly, the Universe is very flat!
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Why inflation?
The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past.
This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Secondly, the Universe is very flat!

In a decelerating Universe, |𝛺K| < 10-3, and therefore it must have been |𝛺K| < 10-17 during R. dom.
Can we justify such a finely-tuned initial condition?
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Lesson 2 a) Inflation



Why inflation?
The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past.
This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Secondly, the Universe is very flat!

In a decelerating Universe, |𝛺K| < 10-3, and therefore it must have been |𝛺K| < 10-17 during R. dom.
Can we justify such a finely-tuned initial condition?

An early period of large acceleration would increase     , driving 𝛺K to zero before radiation domination.

Inflation (              at early times) can therefore solve the horizon and curvature problems!

To solve them, the scale factor must expand by 

Lesson 2 a) Inflation



How inflation?
The simplest accelerating model we’ve seen is a cosmological constant (de-Sitter universe)
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How inflation?
The simplest accelerating model we’ve seen is a cosmological constant (de-Sitter universe)

However, once vacuum dominates, it dominates forever. We need a “graceful exit”
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Scalar fields
Next simplest model is a scalar field
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Scalar fields
Next simplest model is a scalar field

In the homogeneous limit:

Lesson 2 a) Inflation



Scalar fields
Next simplest model is a scalar field

In the homogeneous limit:
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Scalar fields
Next simplest model is a scalar field

In the homogeneous limit:

In the limit                      , the field behaves as a fluid with equation of state p=-𝜌, leading to an 
exponential acceleration!

Dynamics in an expanding Universe:

Lesson 2 a) Inflation

Klein-Gordon equation

Friedmann equation
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The slow-roll math

Lesson 2 a) Inflation

A successful inflaton model must achieve:

In this approximation:

So we get acceleration So inflation can last
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The slow-roll math

Lesson 2 a) Inflation

Example: quadratic potential (massive scalar field)

In slow-roll regime, Friedmann equation and K-G equation read:

These can be readily integrated:



The slow-roll math

Lesson 2 a) Inflation

Example: quadratic potential (massive scalar field)

Inflation ends when

At which point:

Since we want this to be ~60, the field must
start at high, Planckian values.
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Graceful exit, reheating

Lesson 2 a) Inflation

When the field reaches the minimum:

Field behaves like presureless fluid:

Through couplings, inflaton energy transfers to other fields, eventually generating SM particles (reheating).
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a) Homogeneous cosmology. The FRW metric. Distances and redshift. The Friedman Equation.
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c) Relativistic perturbations. Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.
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Quantum fluctuations and the hubble scale
Inflation provides a natural way to generate the initial metric fluctuations.
The key fact is that the comoving Hubble scale (aH)-1 shrinks dramatically during inflation:
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Quantum fluctuations and the hubble scale
Inflation provides a natural way to generate the initial metric fluctuations.
The key fact is that the comoving Hubble scale (aH)-1 shrinks dramatically during inflation.
Perturbations on scales above or below (aH)-1 behave very differently.

● They are preserved on super-horizon scales.

Lesson 2 b) Perturbations from inflation
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● Perturbations are preserved on super-horizon scales.
At the same time quantum mechanics prevents a field from being perfectly homogeneous.
Even in vacuum state, quantum fluctuations are always present.
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Quantum fluctuations and the hubble scale
Inflation provides a natural way to generate the initial metric fluctuations.

● Perturbations are preserved on super-horizon scales.
● Even in vacuum, quantum fluctuations are always present.
● Quickly inflated beyond the horizon, and frozen.
● Eventually re-enter horizon and evolve again (classically).

Lesson 2 b) Perturbations from inflation

Our goal:
Predict the spectrum from 
quantum fluctuations
after inflation



1. Sub-horizon perturbations during inflation
During slow-roll, and on sub-horizon scales:
KG equation for the perturbation:
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1. Sub-horizon perturbations during inflation
During slow-roll, and on sub-horizon scales:
KG equation for the perturbation:

Through a change of variables:                                                                            

                                                                                        On sub-horizon scales

fk behaves like a harmonic oscillator. Let’s quantize it!

Lesson 2 b) Perturbations from inflation



2. Quantize fluctuations and get vacuum statistics
Quick review of canonical quantization
1. Promote fk to operator and split into ladder operators

Lesson 2 b) Perturbations from inflation



2. Quantize fluctuations and get vacuum statistics
Quick review of canonical quantization
1. Promote fk to operator and split into ladder operators

2. Fix normalisation by:
a. Ensuring commutation relations of field and conjugate momentum operator.
b. Ensuring that field’s vacuum state is also lowest-energy eigenstate.

Lesson 2 b) Perturbations from inflation



2. Quantize fluctuations and get vacuum statistics
Quick review of canonical quantization
1. Promote fk to operator and split into ladder operators

2. Fix normalisation by:
a. Ensuring commutation relations of field and conjugate momentum operator.
b. Ensuring that field’s vacuum state is also lowest-energy eigenstate.

3. Compute field’s vacuum statistics

Lesson 2 b) Perturbations from inflation

Power spectrum



2. Quantize fluctuations and get vacuum statistics
Quick review of canonical quantization
1. Promote fk to operator and split into ladder operators

2. Fix normalisation by:
a. Ensuring commutation relations of field and conjugate momentum operator.
b. Ensuring that field’s vacuum state is also lowest-energy eigenstate.

3. Compute field’s vacuum statistics

Lesson 2 b) Perturbations from inflation

Inflation doesn’t predict the field 
configuration, but it does predict its 
degree or variability.



3. Super-horizon perturbations
The behavior of 𝛿𝜑k changes after k crosses the Hubble scale.
Simplest strategy:
1. Relate 𝛿𝜑k ,to Rk at horizon crossing.
2. Rk is then preserved until it crosses back inside the horizon after inflation ends.
3. Relate Rk to all other perturbations of interest (𝜓, 𝛿, 𝜃…) through transfer functions.
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3. Super-horizon perturbations
The behavior of 𝛿𝜑k changes after k crosses the Hubble scale.
Simplest strategy:
1. Relate 𝛿𝜑k ,to Rk at horizon crossing.
2. Rk is then preserved until it crosses back inside the horizon after inflation ends.
3. Relate Rk to all other perturbations of interest (𝜓, 𝛿, 𝜃…) through transfer functions.

For single-field inflation:

Using                           , and evaluating at                  :

Lesson 2 b) Perturbations from inflation
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The primordial power spectrum

During inflation, both H and 𝜀 vary very slowly. Spectrum is almost scale-invariant.

Common parametrisation:

A specific model does not provide a prediction for As, but it does for ns:
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The primordial power spectrum

During inflation, both H and 𝜀 vary very slowly. Spectrum is almost scale-invariant.

Common parametrisation:

A specific model does not provide a prediction for As, but it does for ns:

Latest measurement from Planck:

Lesson 2 b) Perturbations from inflation
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Recombination and last scattering

Lesson 3 a) The CMB

At early times, energetic photons prevent recombination

Many free electrons                short mean-free path
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2. Equilibrium calculation: Saha equation.

Matter domination!
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When does recombination happen?

Lesson 3 a) The CMB

1. Wild guess: hydrogen ionisation potential 𝜒=13.6 eV.

2. Equilibrium calculation: Saha equation.

3. Non-equilibrium corrections due to:
- Re-absorption
- Lyman-𝛼 resonant scattering

Rad. domination?
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Perturbations during recombination

Lesson 3 a) The CMB

We need to solve for the evolution of 6 quantities:

CDM
DM uncoupled (except gravitationally)

Baryon + photon fluid

Gravitational potential

Potential set mostly by DM
at recombination.

Acoustic waves before 
recombination.

z<zrec: single, tightly-coupled, viscous fluid
z>zrec: baryons decoupled, like DM



Temperature fluctuations

Lesson 3 a) The CMB

Approximations:
1. Instantaneous recombination.
2. Temperature from frequency:
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Temperature fluctuations

Lesson 3 a) The CMB

Redshift in perturbed FRW (as we saw in tutorial):

Therefore:

Stefan-Boltzmann law:
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Temperature fluctuations

Lesson 3 a) The CMB

Integrated Sachs-Wolfe (ISW)
Doppler (kinematic redshift)

Sachs-Wolfe (gravitational redshift)

Intrinsic fluctuation

ISW:
- Caused by time-varying potentials at early 

(R-dom) and late (𝛬-dom) times.
- Effect on CMB Cl from early ISW.
- Late ISW detectable in cross-correlation 

with low-z probes.
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Temperature fluctuations

Lesson 3 a) The CMB

Integrated Sachs-Wolfe (ISW)
Doppler (kinematic redshift)

Sachs-Wolfe (gravitational redshift)

Intrinsic fluctuation

Damping tail due to 
viscosity in baryon-photon 
fluid.
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Lesson 3 a) The CMB
Peak structure (height, frequency, position) governed by rs, dA, relative baryon abundance fb.

- 𝛺b: peak height (through fb) and frequency (through rs).
- 𝛺m: peak height (through fb), frequency (through rs), and positions (through dA).
- 𝛺k or 𝛺𝛬: peak positions (through dA).
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Lesson 3 a) The CMB

Things I haven’t discussed:
- Finite duration of recombination (additional damping).
- CMB polarization:

Polarization-dependent Thomson scattering in unpolarised radiation with quadrupolar anisotropy.
- B-mode polarization:

A probe of tensor perturbations (gravitational waves from inflation).
- Reionization:

More Thomson scattering at low redshift. Large-scale anisotropies, more polarisation.
- Sunyaev-Zel’dovich:

Inverse Compton scattering by high-energy electrons in galaxy clusters. Spectral distortions.
- Primordial non-Gaussianity:

Inflation predicts mostly Gaussian perturbations.

Recommended references:
- Durrer: “The Cosmic Microwave Background”
- Mukhanov: “Physical foundations of cosmology”
- Dodelson: “Modern cosmology”
- Ma & Bertschinger: “Cosmological perturbations”

https://books.google.co.uk/books/about/The_Cosmic_Microwave_Background.html?id=_V4JEAAAQBAJ&source=kp_book_description&redir_esc=y
https://www.cambridge.org/core/books/physical-foundations-of-cosmology/45E9AA7382874E52BA4CC6862C505EAF
https://www.elsevier.com/books/modern-cosmology/dodelson/978-0-12-815948-4
https://arxiv.org/pdf/astro-ph/9506072.pdf
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CMB ultimately limited by 2D nature:

Can we study 3D matter fluctuations after 
recombination?



Lesson 3 b) The matter power spectrum

After recombination:
- Dark matter overdensity keeps growing
- Baryons and photons decouple
- Baryons fall into potential wells set by dark matter
- Dark matter + baryons = non-relativistic matter

What does the matter power spectrum look like?
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Lesson 3 b) The matter power spectrum

Evolution of perturbations depends on:
- Horizon scale
- Era (before or after R-M equality).

Key scale: horizon at equality keq

From Poisson’s equation:

Primordial power spectrum:

Therefore:
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Lesson 3 b) The matter power spectrum

Baryon effects:
- Power decrement (baryons 

don’t accrete before 
recombination).

- Baryon acoustic oscillations 
(standard ruler).
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Lesson 3 b) The matter power spectrum
Non-linear evolution:
Eventually               .  PT may help a bit, but it fails fairly quickly.

Consequences:
- Non-gaussianity: 

information leaks into 
higher-order correlators.

- Coupled evolution of 
Fourier modes.

- Scale-dependent growth.
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Lesson 3 b) The matter power spectrum
Non-linear evolution:
Eventually               .  PT may help a bit, but it fails fairly quickly. When does it fail?
Useful quantity: overdensity variance

Avoiding non-linearities leads 
to severe limitations in 
constraining power, especially 
at z<1.

We must tackle non-linearities!
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Lesson 3 b) The matter power spectrum
Tackling non-linearities:

1. Perturbation theory: helps, but doesn’t get you very far at low z.
2. Lagrangian PT: study particle motion instead of overdensity. Gets you a bit further.
3. Dimensionality reduction: exact solutions in spherical collapse or 1D symmetry.
4. Halo model: simulation-inspired phenomenology. Non-linear by construction, but needs fudging.
5. Simulation-based emulators: requires expensive suits of sims for different models.

Potentially most robust way forward.

CosmicEmu:
https://github.com/lanl/CosmicEmu 

https://github.com/lanl/CosmicEmu
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Lesson 3 c) Gravitational lensing
Probes of 𝛿M
There are many indirect probes of matter:

- Galaxy density
- Gas pressure/density (Sunyaev Zel’dovich, Lyman-𝛼, 21cm)

Main direct probe: gravitational lensing

Weak lensing: gravity causes only small
variations to photon path.
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Lesson 3 c) Gravitational lensing
Weak lensing
Starting point: geodesic equation

1. Project onto transverse space and writing in terms of angular separation:

2. Pull out angular derivative

3. Flat-sky approximation (for simplicity):
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Lesson 3 c) Gravitational lensing
Convergence and shear
Shifts described by displacement
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Shear can be transformed into convergence:

Convergence can be related to matter overdensity:
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Lesson 3 c) Gravitational lensing
Probes: 1. Galaxy lensing
Lensing modifies galaxy ellipticity in a correlated manner

Map mean galaxy ellipticity == map shear.

Requirements:
- High number density
- Deep and wide surveys
- Excellent imaging resolution for

shape measurement.

Lensing also changes galaxy positions and fluxes.
Modification to galaxy overdensity:

 “Magnification bias”



Lesson 3 c) Gravitational lensing
Probes: 2. CMB lensing
Lensing modifies the trajectories of CMB photons.
The effect is second-order, but detectable at high significance.
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Lesson 3 c) Gravitational lensing
Probes: 2. CMB lensing
Idea: reconstruct 𝛷L from pairs of Fourier modes (quadratic estimator):

Resulting map contains information about structure growth since recombination!
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1. CMB: primordial gravitational waves from B-mode polarization.

Problem: Galactic foregrounds dominate the B-mode signal.
How will we believe a detection? Precise understanding of dust/synchrotron emission in MW.

2. Large-scale structure: dark energy, massive neutrinos, primordial non-Gaussianity
Problems:

- Lensing: intrinsic galaxy alignments, AGN feedback
- Galaxy clustering: how do galaxies relate to matter?
- 21cm: Galactic foregrounds dominate by many orders of magnitude.

How will we believe a detection? Precise understanding of galaxy formation and evolution.
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Coda: opportunities and challenges
Fundamental physics from cosmology
1. CMB: primordial gravitational waves from B-mode polarization.

How will we believe a detection? Precise understanding of dust/synchrotron emission in MW.
2. Large-scale structure: dark energy, massive neutrinos, primordial non-Gaussianity

How will we believe a detection? Precise understanding of galaxy formation and evolution.

AGN feedback

Intrinsic alignments

Galaxy bias

Galactic foregrounds

Cosmology
We must become astrophysicists before 
we can use cosmology reliably!


