Neutrino Physics (Experimental)

$$P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\alpha}) = 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2 (1.27\Delta m^2 L / E)$$

number of signal events (E) =

 v_{α} flux (E) x oscillation probability (E) x v_{α} cross section (E) x detector efficiency (E)

$$P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta \neq \alpha}) = \sin^2 2\vartheta_{\alpha\beta} \sin^2 (1.27\Delta m^2 L / E)$$

number of signal events (E) =

 v_{α} flux (E) x oscillation probability (E) x v_{β} cross section (E) x detector efficiency (E)

Exercise 1

In the salt phase, SNO (1kton) detected solar neutrino induced NC and CC events for 391 days.

A) From the number of detected events, efficiencies and cross-section given in the table below, compute Φ_{CC} and Φ_{NC} , the neutrino fluxes measured by CC and NC processes.

Process	Number of events	Cross-section (cm ²)	Efficiency
CC(v _e d->e-pp)	2176±78	0.6×10 ⁻⁴²	1
NC(v _x d->v _x np)	2010±85	0.4×10 ⁻⁴²	0.5

B) Using the values of Φ_{CC} and Φ_{NC} found in A), compute the probability of an electron neutrino to convert into a muon or tau neutrino, $P(v_e - v_{\mu,\tau})$

Exercise 2

Borexino experiment has measured the spectrum of solar neutrinos in a wide energy range.

Nature 562, 505-510 (2018)

- A) How can the solar-neutrino fluxes be determined from the electron neutrino measured rates?
- B) Which assumptions are needed to measure the electron neutrino survival probability?
- C) Borexino is a liquid scintillator detector with a design similar to KamLAND and Double Chooz. Why does it use the neutrino-electron scattering instead of the Inverse beta decay reaction?