A lightning course on Flavor Physics

I - Introduction and flavor structure in the SM

Jorge Martin Camalich

What is Flavor Physics?

"Just as ice cream has both colour and flavour so do quarks" H. Fritzsch & M. Gell-Mann, 1971

The Standard Model of Particle Physics

- 3 *almost identical* "families" of matter fields
 - Up quarks (Q=2/3): "up", "charm" and "top"
 - Down quarks (Q=-1/3): "down", "strange" and "bottom"
 - Neutral leptons: Neutrinos
 - Charged leptons: Electron, muon and tau
 - "Identical": Same gauge couplings (e.g. charges)
 - "Almost": Different masses!

What is Flavor Physics?

Only weak interactions violate flavor

• **Classic:** Nuclear (neutron) β decay

Flavor physics focuses on studying the implications of flavor violation in the SM and beyond

- Structural: Gauge symmetries, quantum numbers, vacuum structure (accidental symmetries).
- Parametric: Flavor eventually determined by 13 (out of 18) free parameters of the SM.
 - Flavor patterns and hierarchies.
 - Approximate symmetries (e.g. isospin, $SU(3)_F$, etc)

• **Contemporary:** *B* meson decay

Why studying Flavor Physics?

- 1. Deep fundamental questions about nature
 - Flavor puzzle: Origin of flavor hierarchies in the SM
 - **CP violation:** Origin of the cosmological matter-antimatter asymmetry
- 2. Very sensitive (indirect) probes/constraints of beyond SM
 - Flavor-changing neutral currents: Sensitive up to 1000 TeV!
 - Rapid and revolutionary experimental progress
- 3. Flavor anomalies and discovery potential
 - B-meson lepton-flavor universality anomalies
 - Muon (g-2)

Why studying Flavor Physics?

Flavor Physics spearheaded the discovery of the SM when the SM was the New Physics!

- Rare kaon decays: Discovery of charm quark

PROPOSAL FOR K° DECAY AND INTERACTION EXPERIMENT J. W. Cronin, V. L. Fitch, R. Turlay (April 10, 1963) 1 *

INTRODUCTION The present proposal was largely stimulated by the recent anomalous results of Adair et al., on the coherent regeneration of K⁰, mesons. It is the purpose of this experiment to check these results with a precision far transcending that attained in the previous experiment. Other results to be obtained will be a new and much better limit for the partial rate of $K_{2}^{0} \rightarrow \pi^{+} + \pi^{-}$, a new limit for the presence (or absence) of neutral currents as observed through $K_2 \neq \mu^+ + \mu^-$.

• Nuclear β decay: Discovery of weak interactions and the neutrinos • Kaon decays: Discovery of CP violation \rightarrow Discovery of 3 generations

Outline of these lectures and bibliography

- The origin of flavor mixing in the SM
- The counting of flavor parameters
- FCNCs in the SM and GIM mechanism
- EFTs for flavor
- Dealing with hadronic matrix elements
- One example and tutorial
- Second day:
- Bibliography

First day:

- Lecture notes: Grossman&Tanedo arXiv: 1711.03624 Grinstein - arXiv: 1501.05283
- Books: Branco, Lavoura & Silva <u>"CP violation"</u> Core reference

• The unitarity triangle and *CP* violation in the SM

• Brief overview on selected hot topics in flavor physics

Donoghue, Golowich & Holstein <u>"Dynamics of SM"</u> - Phenomenology Buras <u>"Gauge Theory of Weak Decays ...</u> -Detailrd calcs in SM and BSM

Flavor universality of gauge interactions in the SM

• The gauge interactions of the fermions of family k

$$\mathscr{L}_{gauge} \subset \bar{\psi}^{k} \left(i\partial_{\mu} + g X^{A}_{\mu} t^{A}_{k} \right) \gamma^{\mu} \psi^{k}$$

• SM's gauge group: $SU(3)_c \times SU(2)_L \times U(1)$

Family-independent quantum numbers

 $Q_L^k \sim (3,2)$ $L_L^k \sim (1,2)$

The gauge interactions in the SM are flavor universal \mathscr{L}_{gauge} has a **global accidental** $U(3)^5$ flavor symmetry

2)_{1/6}
$$u_R^k \sim (3,1)_{2/3} \quad d_R^k \sim (3,1)_{-1/3}$$

)_{-1/2} $e_R^k \sim (1,1)_{-1}$

Origin of flavor in the yukawa interactions of the SM

$$\mathscr{L}_{\text{yukawa}} = y_u^{kl} \bar{Q}_L^k \tilde{H} u_R^l +$$

• Mass generation in the SM: $SU(2)_L \times U(1)_Y \xrightarrow{\text{SSB}} U(1)_{\text{FM}}$ $m_f^{kl} = v_{\rm ew} y_f^{kl}$ $\vdash m_d^{kl} \bar{d}_I^k d_R^l + m_e^{kl} \bar{e}_I^k e_R^l + h.c.$

$$\mathscr{L}_{\text{masses}} = m_u^{kl} \bar{u}_L^k u_R^l +$$

Diagonalization: Linear & unitary field redefinitions commuting with Lorentz and $U(1)_{\rm EM}$

 $f_L \to L_f f_L$ m_{u} m_d $f_R \rightarrow R_f f_R$ m_e

Unitary matrix

 $y_d^{kl} \bar{Q}_L^k H d_R^l + y_e^{kl} \bar{L}_L^k H e_R^l + h.c.$

Matrices with N^2 complex parameters

$$\rightarrow L_{u}^{\dagger}m_{u}R_{u} = \text{diag}\left(m_{u}, m_{c}, m_{t}\right) \longrightarrow$$

$$\rightarrow L_{d}^{\dagger}m_{d}R_{d} = \text{diag}\left(m_{d}, m_{s}, m_{b}\right) \longrightarrow$$

$$9 \text{ real parametric}$$

$$\rightarrow L_{e}^{\dagger}m_{e}R_{e} = \text{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) \checkmark$$

Flavor violation in the charged currents (CC)

$$\mathscr{L}_{\text{gauge}} \supset g\bar{\psi}_L^k \left(T^+ W_\mu^+ + T^- W_\mu^- \right) \gamma^\mu \psi_L^k = g \left(\bar{u}_L^k \gamma^\mu d_L^k + \bar{\nu}_L^k \gamma^\mu e_L^k \right) W_\mu^+ + \text{h.c.}$$
$$Q_L^k = (u_L^k, d_L^k)^T \qquad \qquad L_L^k = (\nu_L^k, e_L^k)^T$$

• Missalignment between gauge and *up* and *down* quark mass matrices

$$\mathscr{L}_{\rm CC} = g \left(V_{\rm CKM} \right)_{kl} \bar{u}_L^k \gamma^\mu d_L^l W_\mu^+ + g \bar{\nu}_L^k \gamma^\mu e_L^k W_\mu^+ + \text{h.c.}$$

• The Cabibbo-Kobayashi-Maskawa mixing matrix

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• Neutrinos in the SM are massless and flavor mixing can be rotated away

Flavor violation occurs because we cannot diagonalize simultaneously the gauge and yukawa interactions

Parameter counting in the CKM matrix

- 1. $V_{\rm CKM}$ is a unitary matrix (it is the product of 2 unitary matrices)
- **2.** An $N \times N$ unitary matrix is **complex** and is parametrized by N^2 real numbers
- 3. Physics invariant w.r.t. (2N 1) rephasings of the quark fields

$$u_L^k \to e^{i\alpha_k} u_L^k \qquad d_L^k \to e^{i\beta_k} d_L^k$$

meters: $(N-1)^2$

Number of independent par

- 4. How many are rotation angles and complex phases?
 - Unitary matrix = Complex extension of orthogonal matrix with $N_{\text{angles}} = N(N-1)/2$

 $N_{\rm angles} = N(N-1)/2$

• The minimum number of generations needed to generate CP violation is 3!

An N-dimensional unitary mixing matrix contains ...

$$N_{\rm phases} = (N-1)(N-2)/2$$

More about parameter counting and spurions Elegant symmetry-breaking argument for counting physical parameters

- Illustration with leptons
 - 1. \mathscr{L}_{gauge} in the SM invariant w.r.t. $U(3)_L \times U(3)_e \Rightarrow 18$ generators

- 4. For leptons 18 15 = 3 corresponding to the **3 lepton masses**
- Spurions: Pretend yukawa matrices are bifundamentals of the flavor group Keep track of flavor violation in the SM and beyond (Minimal flavor violation)

2. $\mathscr{L}_{\text{vukawa}}$ breaks $U(3)_L \times U(3)_e \rightarrow U(1)_e \times U(1)_\mu \times U(1)_\tau \Rightarrow 3$ unbroken generators

3. We can use broken generators to rotate away unphysical parameters in $\mathscr{L}_{ ext{vukawa}}$

#physical parameters = #total parameters — #broken generators

Same analysis leads to 10 physical parameters for quarks (6 masses, 3 angles, 1 phase)

A standard parametrization of CKM

- Phase redefinitions of quarks \Rightarrow Set V_{ud} , V_{us} , V_{cb} and V_{tb} real
- The "standard" unitary parametrization (s

$$V_{\rm CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

The SM is *defined* when the 3 CKM angles and its 1 phase are **determined experimentally** ... $s_{12} = 0.22650(48)$ $s_{23} = 0.04053(71)$ $s_{13} = 0.00361(10)$ $\delta = 68.5(2.6)^{\circ}$

• The quark mixing matrix is **hierarchical!** • Compare to the anarchical neutrino sector (PMNS matrix) ... What 's going on?

$$c_{ij} = \sin \theta_{ij}$$
, $c_{ij} = \cos \theta_{ij}$)

Flavor hierarchies and the flavor puzzle

• Flavor transitions

Flavor puzzle: Origin of patterns and hierarchies in the values of the flavor parameters

- Portal to BSM physics!
 - hierarchies (Weinberg), clockwork mechanism, etc.
- Essential for our existence! Anthropic principle
- Origin of CP violation? Connection to baryogenesis
 - Why 3 families?

• Horizontal symmetries (Froggatt-Nielsen), extra dimensions (Randall-Sundrum), tree-loop

• Stability of matter (*up* and *down* quark masses) & stability of vacuum (top-quark mass)

Complex phases and CP violation

- The SM is a chiral theory \Rightarrow The SM violates parity (P) and charge conjugation (C)
- However the SM does not necessarily violate CP

$$\mathscr{L}_{toy} = y_{ij} \,\bar{\chi}_i \psi_j \,S + y_{ij}^* \,\bar{\psi}_j \chi_i \,S^\dagger \qquad \Big\} \\ (CP) \mathscr{L}_{toy} (CP)^\dagger = y_{ij} \,\bar{\psi}_j \chi_i \,S^\dagger + y_{ij}^* \,\bar{\chi}_i \psi_j \,S \qquad \Big\}$$

• Unambiguous (rephasing invariant) measure of CP violation in the SM

Jarlskog invariant $J = \text{Im}\left(V_{ii}V_{kl}V_{il}^{*}V_{kl}^{*}\right)$ $i j \kappa i i k j$

The SM violates CP because the nontrivial CKM phase is not 0 or π

° In the standard CKM parametrization $J = c_{12}s_{12}^2c_{13}^2s_{13}c_{23}s_{23}\sin\delta$ All mixing angles must be nonzero for CP violation • CP violation is in the SM but not explained by the SM

CKM hierarchies in practice: Wolfenstein parametrization

• Expose the CKM hierarchies explicitly

- The Wolfenstein parametrization is **not exactly unitary**

• Mixing first two families is unitary (and independent of 3rd family) up to $\mathcal{O}(\lambda^2)$

The unitary triangle(s)

• 2. is a null sum of complex vectors \Rightarrow Unitarity triangles

1st and 3rd columns give triangle with all sides of same $\mathcal{O}(\lambda^3)$ • Three (rephasing invariant) angles (directly observable!) $\phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$ • The apex is fixed by a redefinition:

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \qquad \alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) \qquad \gamma = \phi_2$$

$$s_{13}e^{i\delta} = A\lambda^3(\rho + i\eta) \equiv A\lambda^3(\bar{\rho} + i\bar{\eta}) \frac{\sqrt{1 - A^2\lambda^4}}{\sqrt{1 - \lambda^2} \left(1 - A^2\lambda^4(\bar{\rho} - A^2)\right)}$$

and is **rephasing invariant**!

$$\bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

$V_{\rm CKM}$ is unitary 1. Row(column) unitarity: $|V_{i1}|^2 + |V_{i2}|^2 + |V_{i3}|^2 = 1$ 2. Off-diagonal unitarity: $V_{i1}V_{i1}^* + V_{i2}V_{i2}^* + V_{i3}V_{i3}^* = 0$

 $+i\bar{\eta})$

Experimental constraints in the unitary triangle

• The existence of a unitary triangles (non-zero angles) is a signal of CP-violation

Two collaborations perform updated fits to the CKM parameters

- **CKMfitter** frequentist analysis ckmfitter.in2p3.fr
 - Conservative with uncertainties (*Rfit*)

- ° Geometric interpretation: Area_{UT} = J/2

- UTfit bayesian analysis www.utfit.org
 - Includes fits with BSM (EFT) parameters

UT triangle and the Jarslkog invariant

° CP violation small in SM because of small mixing: $J_{\rm SM} \approx \lambda^6 A^2 \eta = 3.00(12) \times 10^{-5}$

Neutral currents at tree level in the SM: Photon, gluon and Higgs

• Yukawa interactions (higgs): Couplings aligned with the mass basis

• QED (photons) and QCD (gluons): Couplings diagonal in flavor space (same charges/reps)

CKM unitarity:
$$V^{\dagger}V = \mathbf{1}$$

$$= e \, Q_q \, \bar{q}^k \gamma^\mu \, (\mathbf{1})_{kl} \, q^l \to e \, Q_q \, \bar{q}^k \gamma^\mu \, (V_q^\dagger)_{kj} \, (V_q)_{jl} \, q^l = J_{\rm EM}^\mu$$

SSB in the SM:
$$H^T \to \left(\begin{array}{cc} 0 & v + \frac{h}{\sqrt{2}} \end{array} \right)$$

 $\bar{Q}_L^k H(y_d)_{kl} d_R^l \to \bar{Q}_L^k (m_d)_{kl} d_R^l \left(1 + \frac{h}{v\sqrt{2}} \right)$

Neutral currents at tree level in the SM: The Z boson

• Weak charges: Couplings of the Z also diagonal in flavor space

- 0
- Before 1970 hadrons were thought composed exclusively of *u*, *d* and *s* quark with CC interactions rotated by 2×2 Cabibbo mixing: $J_{CC}^{\mu} = \overline{u}(1 - \gamma_5)(\cos\theta_C d + \sin\theta_C s)$
- ° If $(u, d)^T$ is iso-doublet and s isosinglet \Rightarrow There must be tree-level neutral $\Delta S = 1$ decays
- **PDG (Particle Data Group):**

CC: Br($K_L \to \pi^+ e^- \bar{\nu}$) = 40.55(11) %

NC: Br($K_L \rightarrow \mu^+ \mu^-$) = 6.84(11) × 10⁻⁹

$$J_Z^{\mu} = -\frac{e}{2s_w^2} \,\bar{\psi}^k \left(g_V^{\psi} \gamma_{\mu} + g_A^{\psi} \gamma^{\mu} \gamma_5 \right) \psi^k$$

$$g_V^{\psi_k} = \frac{T_3^{(\psi_k)} - 2s_w^2 Q_{\psi}}{g_A^{\psi_k}} \qquad g_A^{\psi_k} = \frac{T^{(\psi_k)}}{g_A^{\psi_k}}$$

What is relevant here is that all *up*-like fermions and all *down*-like fermions have the same weak isospin

Flavor changing neutral currents (FCNC) are suppressed! There must be a 4th quark (charm)! Glashow, Iliopoulos & Maiani (GIM) 1970

Flavor-changing neutral currents (FCNC) in the SM

• The GIM mechanism

- In the SM, FCNCs occur only at 1-loop level!
- In addition, they receive a **flavor suppression**

Take the $\Delta C = 1$ neutral transition $c \rightarrow u\gamma$

Amplitude
$$\approx \frac{e g^2}{4\pi^2 m_W^2} \sum_k V_{ck}^* V_{uk} f(m_k^2/m_W^2)$$

• The loop function can be Taylor expanded
 $f(m_k^2/m_W^2) = a + bm_k^2/m_W^2 + ...$
• CKM unitarity!
Amplitude $\approx \frac{e g^2}{4\pi^2 m_W^2} \left(V_{cs}^* V_{us} \frac{m_s^2 - m_d^2}{m_W^2} + V_{cb}^* V_{ub} \frac{m_b^2 - m_d^2}{m_W^2} \right)$
 $\approx \frac{e g^2}{4\pi^2 m_W^2} \lambda^5 y_b^2$

The GIM mechanism is a consequence of CKM unitarity at loop level • It implies suppression of FCNCs by small yukawas and/or small mixing angles

The role of the top-quark in the FCNCs

- FCNCs in the *down*-quark sector
 - Sensitive to *up*-quarks \Rightarrow **Prominence of top yukawa**
 - $m_W \lesssim m_t$: Suppression to be revisited

Take now the **neutral** *down* **quark** transition $b \rightarrow s\gamma$

Amplitude
$$\approx \frac{e g^2}{4\pi^2 m_W^2} \underbrace{\widetilde{V_{tb} V_{ts}^*}}_{W} f(\frac{m_t^2}{m_W^2})$$

