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A lightning course on Flavor Physics 

I - Introduction and flavor structure in the SM



What is Flavor Physics? 

                               "Just as ice cream has both colour and flavour so do quarks"     
                                                                  H. Fritzsch & M. Gell-Mann, 1971

The Standard Model of Particle Physics 

• 3 almost identical "families" of matter fields 
Up quarks (Q=2/3): "up", "charm" and "top" 
Down quarks (Q=-1/3): "down", "strange" and "bottom" 
Neutral leptons: Neutrinos 
Charged leptons: Electron, muon and tau  
"Identical": Same gauge couplings (e.g. charges) 
"Almost": Different masses!



What is Flavor Physics? 
Only weak interactions violate flavor

• Classic: Nuclear (neutron)  decayβ • Contemporary: B meson decay

  Flavor physics focuses on studying the implications of flavor violation in the SM and beyond 

• Structural: Gauge symmetries, quantum numbers, vacuum structure (accidental symmetries).  

• Parametric: Flavor eventually determined by 13 (out of 18) free parameters of the SM. 

Flavor patterns and hierarchies.  

Approximate symmetries (e.g. isospin, , etc) SU(3)F



Why studying Flavor Physics? 

1. Deep fundamental questions about nature 

• Flavor puzzle: Origin of flavor hierarchies in the SM 

• CP violation: Origin of the cosmological matter-antimatter asymmetry 

2. Very sensitive (indirect) probes/constraints of beyond SM  

• Flavor-changing neutral currents: Sensitive up to 1000 TeV!  

• Rapid and revolutionary experimental progress 

3. Flavor anomalies and discovery potential 

• B-meson lepton-flavor universality anomalies 

• Muon  (g − 2)



Why studying Flavor Physics? 

Flavor Physics spearheaded the discovery of the SM 
when the SM was the New Physics!  

• Nuclear  decay: Discovery of weak interactions and the neutrinos 
• Rare kaon decays: Discovery of charm quark  
• Kaon decays: Discovery of CP violation  Discovery of 3 generations

β

→



Outline of these lectures and bibliography 

• The origin of flavor mixing in the SM 
• The counting of flavor parameters  
• The unitarity triangle and CP violation in the SM 
• FCNCs in the SM and GIM mechanism 
• EFTs for flavor  
• Dealing with hadronic matrix elements  
• One example and tutorial

First day:

Second day:  • Brief overview on selected hot topics in flavor physics

• Bibliography

• Lecture notes: Grossman&Tanedo - arXiv: 1711.03624

        Grinstein - arXiv: 1501.05283

• Books: Branco, Lavoura & Silva - "CP violation" - Core reference

 Donoghue, Golowich & Holstein "Dynamics of SM" - Phenomenology 

 Buras "Gauge Theory of Weak Decays ..." -Detailrd calcs in SM and BSM 

https://arxiv.org/abs/1711.03624
https://arxiv.org/abs/1501.05283
https://global.oup.com/academic/product/cp-violation-9780198716754?cc=es&lang=en&
https://www.cambridge.org/core/books/dynamics-of-the-standard-model/639475F2E0F99E2334D01BD648D2F993
https://www.cambridge.org/core/books/gauge-theory-of-weak-decays/BEDC617B1F3651D3B04F6992D80E7179


Flavor universality of gauge interactions in the SM

• The gauge interactions of the fermions of family k 

• SM's gauge group: SU(3)c × SU(2)L × U(1)

Qk
L ∼ (3,2)1/6

Lk
L ∼ (1,2)−1/2

uk
R ∼ (3,1)2/3 dk

R ∼ (3,1)−1/3

ek
R ∼ (1,1)−1

Family-independent  
quantum numbers

ℒgauge ⊂ ψ̄k (i∂μ + gXA
μ tA

k ) γμψk

The gauge interactions in the SM are flavor universal 

 has a global accidental  flavor symmetryℒgauge U(3)5



• Diagonalization: Linear & unitary field redefinitions commuting with Lorentz and U(1)EM

• Mass generation in the SM: SU(2)L × U(1)Y
SSB U(1)EM

ℒyukawa = ykl
u Q̄k

LH̃ul
R + ykl

d Q̄k
LHdl

R + ykl
e L̄k

LHel
R + h . c .

Matrices with  complex parameters  N2

ℒmasses = mkl
u ūk

Lul
R + mkl

d d̄k
Ldl

R + mkl
e ēk

Lel
R + h . c .

mkl
f = vew ykl

f

fL → Lf fL

fR → Rf fR

Origin of flavor in the yukawa interactions of the SM 

mu → L†
umuRu = diag (mu, mc, mt)

md → L†
d mdRd = diag (md, ms, mb)

me → L†
e meRe = diag (me, mμ, mτ)

9 real parameters Unitary matrix 



Flavor violation in the charged currents (CC) 

• Missalignment between gauge and up and down quark mass matrices  

ℒgauge ⊃ gψ̄k
L (T+W+

μ + T−W−
μ ) γμψk

L = g (ūk
Lγμdk

L + ν̄k
Lγμek

L) W+
μ + h . c .

Qk
L = (uk

L, dk
L)T Lk

L = (νk
L, ek

L)T

• The  Cabibbo-Kobayashi-Maskawa mixing matrix

ℒCC = g (VCKM)kl
ūk

Lγμdl
LW+

μ + gν̄k
Lγμek

LW+
μ + h . c .

VCKM =
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

Flavor violation occurs because we cannot diagonalize simultaneously the gauge and yukawa interactions 

Neutrinos in the SM are massless and flavor mixing can be rotated away 



1.  is a unitary matrix (it is the product of 2 unitary matrices) 

2. An  unitary matrix is complex and is parametrized by  real numbers 

3. Physics invariant w.r.t.  rephasings of the quark fields 

          

Number of independent parameters:  

4. How many are rotation angles and complex phases? 

Unitary matrix = Complex extension of orthogonal matrix with  

The minimum number of generations needed to generate CP violation is 3! 

VCKM

N × N N2

(2N − 1)
uk

L → eiαk uk
L dk

L → eiβk dk
L

(N − 1)2

Nangles = N(N − 1)/2

Parameter counting in the CKM matrix

An dimensional unitary mixing matrix contains ... 

           

N−
Nangles = N(N − 1)/2 Nphases = (N − 1)(N − 2)/2



Elegant symmetry-breaking argument for counting physical parameters 

• Illustration with leptons  

1.  in the SM invariant w.r.t.   18 generators  

2.  breaks  3 unbroken generators 

3. We can use broken generators to rotate away unphysical parameters in  

4. For leptons  corresponding to the 3 lepton masses 

        Same analysis leads to 10 physical parameters for quarks (6 masses, 3 angles, 1 phase) 

• Spurions: Pretend yukawa matrices are bifundamentals of the flavor group 

Keep track of flavor violation in the SM and beyond (Minimal flavor violation)  

ℒgauge U(3)L × U(3)e ⇒

ℒyukawa U(3)L × U(3)e → U(1)e × U(1)μ × U(1)τ ⇒

ℒyukawa

18 − 15 = 3

More about parameter counting and spurions

#physical parameters = #total parameters  #broken generators−



A standard parametrization of CKM 

• Phase redefinitions of quarks  Set  ,  ,   and  real 

• The "standard" unitary parametrization (  , )

⇒ Vud Vus Vcb Vtb

sij = sin θij cij = cos θij

VCKM =
c12c13 s12c13 s13e−iδ

−s12c23 − c12c23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

The SM is defined when the 3 CKM angles and its 1 phase are determined experimentally ... 

                       s12 = 0.22650(48) s23 = 0.04053(71) s13 = 0.00361(10) δ = 68.5(2.6)∘

• The quark mixing matrix is hierarchical! 
Compare to the anarchical neutrino sector (PMNS matrix) ... What´s going on?



Flavor hierarchies and the flavor puzzle 
• Flavor transitions • Masses

Flavor puzzle: Origin of patterns and hierarchies in the values of the flavor parameters 
Portal to BSM physics! 
• Horizontal symmetries (Froggatt-Nielsen), extra dimensions (Randall-Sundrum), tree-loop 

hierarchies (Weinberg), clockwork mechanism, etc 
Essential for our existence! - Anthropic principle 
• Stability of matter (up and down quark masses) & stability of vacuum (top-quark mass)  

Origin of CP violation? - Connection to baryogenesis 
• Why 3 families? 



Complex phases and CP violation 

• The SM is a chiral theory  The SM violates parity (P) and charge conjugation (C) 

• However the SM does not necessarily violate CP  

⇒

ℒtoy = yij χ̄iψj S + y*ij ψ̄j χi S†

(CP)ℒtoy(CP)† = yij ψ̄j χi S† + y*ij χ̄iψj S
⇒ ℒtoy = (CP)ℒtoy(CP)† ⟺ y*ij = yij

The SM violates CP because the nontrivial CKM phase is not 0 or  π

• Unambiguous (rephasing invariant) measure of CP violation in the SM   

Jarlskog invariant 

 J = Im (VijVklV*il V*kj)

In the standard CKM parametrization  

All mixing angles must be nonzero for CP violation 

CP violation is in the SM but not explained by the SM

J = c12s2
12c

2
13s13c23s23 sin δ



CKM hierarchies in practice: Wolfenstein parametrization

• Expose the CKM hierarchies explicitly

VCKM =
1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1
+ 𝒪(λ4)

• The Wolfenstein parametrization is not exactly unitary 

• Mixing first two families is unitary (and independent of 3rd family) up to  𝒪(λ2)

Small parameter: Cabibbo angle  

       λ ≡ s12 = 0.22650(48)

• Define ...     

   

 

  ... and expand in !

s23 ≡ A λ
s13eiδ ≡ Aλ3(ρ−iη)

λ

First 2 families subspace 

                       A = 0.826(12) ρ = 0.152(14) η = 0.357(10)



The unitary triangle(s)

 is unitary 

1. Row(column) unitarity:  

2. Off-diagonal unitarity:   

VCKM
|Vi1 |2 + |Vi2 |2 + |Vi3 |2 = 1

Vi1V*j1 + Vi2V*j2 + Vi3V*j3 = 0

• 2. is a null sum of complex vectors  Unitarity triangles   

1st and 3rd columns give triangle with all sides of same  

Three (rephasing invariant) angles (directly observable!) 

               

The apex is fixed by a redefinition: 

 

    and is rephasing invariant!  

⇒
𝒪(λ3)

β = ϕ1 = arg (−
VcdV*cb

VtdV*tb ) α = ϕ2 = arg (−
VtdV*tb
VudV*ub ) γ = ϕ3 = arg (−

VudV*ub

VcdV*cb )

s13eiδ = Aλ3(ρ + iη) ≡ Aλ3(ρ̄ + iη̄)
1 − A2λ4

1 − λ2 (1 − A2λ4(ρ̄ + iη̄))

ρ̄ + iη̄ = −
VudV*ub

VcdV*cb

VudV*ub + VcdV*cb + VtdV*tb = 0



Experimental constraints in the unitary triangle
• The existence of a unitary triangles (non-zero angles) is a signal of CP-violation 

Two collaborations perform updated fits to the CKM parameters

• CKMfitter - frequentist analysis 
ckmfitter.in2p3.fr

• UTfit - bayesian analysis 
www.utfit.org

Includes fits with BSM (EFT) parameters

UT triangle and the Jarslkog invariant 

Geometric interpretation:   

CP violation small in SM because of small mixing:   

AreaUT = J/2
JSM ≈ λ6A2η = 3.00(12) × 10−5

Conservative with uncertainties (Rfit) 

http://ckmfitter.in2p3.fr
http://www.utfit.org


Neutral currents at tree level in the SM: Photon, gluon and Higgs

• QED (photons) and QCD (gluons): Couplings diagonal in flavor space (same charges/reps)

Jμ
EM = e Qq q̄kγμ (1)kl ql → e Qq q̄kγμ (V†

q)kj (Vq)jl ql = Jμ
EM

 CKM unitarity:  V† V = 1

• Yukawa interactions (higgs): Couplings aligned with the mass basis

 SSB in the SM:      HT → (0 v + h

2 )

Q̄k
LH (yd)kl dl

R → Q̄k
L (md)kl dl

R (1 +
h

v 2 )



Neutral currents at tree level in the SM: The Z boson

• Weak charges: Couplings of the Z also diagonal in flavor space

Jμ
Z = −

e
2s2

w
ψ̄k (gψ

V γμ + gψ
A γμγ5) ψk

gψk
V = T(ψk)

3 −2s2
wQψ gψk

A = T(ψk)

What is relevant here is that all up-like fermions and all down-like fermions have the same weak isospin  
Before 1970 hadrons were thought composed exclusively of u, d and s quark   

  with CC interactions rotated by  Cabibbo mixing:  

If  is iso-doublet and  isosinglet  There must be tree-level neutral  decays 

PDG (Particle Data Group):  

CC:   

NC:   

2 × 2 Jμ
CC = ū(1 − γ5)(cos θCd + sin θCs)

(u, d)T s ⇒ ΔS = 1

Br(KL → π+e−ν̄) = 40.55(11) %
Br(KL → μ+μ−) = 6.84(11) × 10−9

Flavor changing neutral currents (FCNC) are suppressed! 
There must be a 4th quark (charm)! 

Glashow, Iliopoulos & Maiani (GIM) 1970

http://www.scholarpedia.org/article/Glashow-Iliopoulos-Maiani_mechanism


Flavor-changing neutral currents (FCNC) in the SM

 

The loop function can be Taylor expanded 

 

CKM unitarity!  

 

                                          

Amplitude ≈
e g2

4π2 m2
W

∑
k

V*ckVuk f(m2
k /m2

W)

f(m2
k /m2

W) = a + bm2
k /m2

W + …

Amplitude ≈
e g2

4π2 m2
W (V*csVus

m2
s − m2

d

m2
W

+ V*cbVub
m2

b − m2
d

m2
W )

≈
eg2

4π2 m2
W

λ5y2
b

• The GIM mechanism 
In the SM, FCNCs occur only at 1-loop level!  
In addition, they receive a flavor suppression

Take the  neutral transition ΔC = 1 c → uγ

• The GIM mechanism is a consequence of CKM unitarity at loop level 

• It implies suppression of FCNCs by small yukawas and/or small mixing angles



The role of the top-quark in the FCNCs

• FCNCs in the down-quark sector 
Sensitive to up-quarks  Prominence of top yukawa 

 : Suppression to be revisited

⇒
mW ≲ mt

xi =
m2

i

m2
W

Take now the neutral down quark transition b → sγ

Amplitude ≈
e g2

4π2 m2
W

λ2
⏞
VtbV*ts f( m2

t

m2
W

)

Inami-Lin function(s) 

 

 

 linear in  close to 0 and  for  

  at 

f(x) = −
8x3 + 5x2 − 7x

12(1 − x)3
+

x2(2 − 3x)
2(1 − x)4

log x

≈
7
12

x + 𝒪(x2)

f(x) x 𝒪(1) xt

f(x) → 2/3 x → ∞


