A lightning course on Flavor Physics II - FCNCs and sensitivity to New Physics

Jorge Martin Camalich

FCNCs as probes of BSM

• FCNCs can provide <u>null tests</u> of the SM

Null test: Observational test that would contradict the model

• FCNCs are very sensitive to BSM with *non-standard* gauge or flavor structure

- Searching for FCNCs in experiment could herald the discovery of New Physics!
- Null searches are typically expressed as lower-bounds on mass scales of the putative BSM

Observable

• Flavor physics is mostly a low-E endeavour • Flavor is sensitive to **BSM scales orders of** magnitude higher than direct searches or EW precision tests

How do we reach these conclusions and what does this mean?

The theorist's tool kit: Effective field theories

• Energies involved in hadron decays $m_h \ll m_W$

Rigorous and systematic expansion in the small parameter $\epsilon \approx m_h/m_W$ within the Effective Field Theory (EFT)

- We work with low-energy effective Lagrangians:

 - Wilson coefficient: Structure and constants of UV theory $C_{\beta} \approx V_{ud}$, $C_{\gamma} = V_{tb}V_{ts}^*f(x_t)$

Modern subnuclear extension of Fermi Theory

° Neutron β decay

 $\mathcal{M}_{\beta} \approx \mathbf{G}_{F} \mathbf{C}_{\beta} \left(\bar{u} \gamma^{\mu} P_{L} d \right) \left(\bar{e} \gamma_{\mu} P_{L} \nu \right)$

• Extended also to FCNCs

° Radiative B-meson decays (e.g. $B^0 \to K^* \gamma$) $\mathcal{M}_{\gamma} \approx \frac{e \, m_b}{\Delta \pi^2} \, G_F C_{\gamma} \, \bar{s} \sigma^{\mu\nu} \, P_R \, b \, F_{\mu\nu}$

° Dimensionful constant: Scale of dynamics that have been integrated out - $G_F \approx 1/m_W^2$

° Non-renormalizable operators: with $d \geq 5$ and composed of dynamical fields at $E \ll m_W$

EFT for BSM: Low energies

• EFTs can be also used to parametrize new physics

- 1. List **fields** that can be made *on-shell* at the energies of interest
- 2. List gauge symmetries manifest at the energies of interest
- 3. Construct all gauge invariant operators with these fields up to a given dimension d

Power counting: Ordering of the ∞ operators according to power *n* in $(E/\Lambda_{\rm BSM})^n$ • Only a **finite number of operators** needed for a given precision!

• EFTs of UV new physics are phenomenologist's 2nd best friend

- **Bottom-up perspective:** All UV BSM models are subsumed within the EFT 0

Two caveats about bottom-up usage of EFT

- 2. Only grasps the *shapes* of the UV physics

Recipe for the construction of the EFT of the BSM

• Top-down perspective: One can readily test a model with low-energy data by matching to the EFT

1. Not *all* combinations of EFT operators can be accommodated by sensible UV models

Low-energy EFT of the CC quark-lepton interactions

• Ingredients for e.g. neutron β decay

- 2. Gauge symmetries: $SU(3)_c \times U(1)_{\rm EM}$
- 3. Power counting: Leading contribution at n = 2 (dimension-6 operators)

$$\mathscr{L}_{\beta} = \frac{4G_F V_{ud}}{\sqrt{2}} \Big(C_{LL} (\bar{u}\gamma^{\mu}P_L d) (\bar{e}\gamma_{\mu}P_L d) + C_{S_L S_L} (\bar{u}P_L d) (\bar{e}P_L \nu) + C_{S_R S_L} (\bar{u}P_L d) (\bar{e}P_L \mu) + C_{S_R S_L} (\bar{u}P_L \mu) + C_{S_R S_L$$

- Operators distinguished by their Lorentz and chiral structure

Actually, it is very old technology: Equivalent effective Lagrangians led to the discovery of the V - A interaction! (see <u>S. Weinberg's "V-A was the key"</u>)

1. Degrees of freedom at $m_n \sim 1$ GeV: up and down quarks, electron, neutrinos and photons

 ${}_{L}\nu) + C_{RL}(\bar{u}\gamma^{\mu}P_{L}d)(\bar{e}\gamma_{\mu}P_{L}\nu)$

 $P_L d$) $(\bar{e}P_L \nu) + C_{T_L T_L} (\bar{u}\sigma^{\mu\nu}P_L d) (\bar{e}\sigma_{\mu\nu}P_L \nu)$

• Any UV contribution to β decay must be described by these 5 dimension operators at leading order

• If we added right-handed neutrinos we would need 5 more operators (replace $P_L \rightarrow P_R$ in leptons)

Two concepts in the EFT

- - 0
 - The long distance (IR) information is described dynamically at the operator level 0
- RGE evolution of operators
 - EFT is nonrenormalizable *but* can be renormalized order by order 0
 - 0

- **Matching** provides the initial conditions $\vec{C}(\Lambda_{NP})$ for the RGE flow
- 0

• Matching: Procedure by which we transition from a QFT to an EFT with less dynamical d.o.f. at a UV scale $\Lambda_{
m NP}$ One integrates out heavy d.o.f. and the short distance (UV) information is frozen in the Wilson coefficients

Renormalization Group Equation provides the renormalization scale evolution of the Wilson coefficients

$$V^{T}(\alpha_{\rm em}, \alpha_{s}) \overrightarrow{C}(\mu) \longrightarrow \underline{Vector}$$
 of Wilson coefficients

Anomalous dimensions <u>matrix</u> Coefficients of UV divergences

Operators suffer rescaling and mixing when connecting the UV and IR scales! ... Unless symmetry protection!

RGE in β decays and similar transitions

• Corrections at 1-loop given by QED and QCD

• Final RGE between 2 GeV and Z-pole mass

$\left(\begin{array}{c} C_{LL} \\ C_{RL} \\ C_{S_RS_L} \\ C_{S_LS_L} \end{array} ight)$	$(\mu = 2 \text{ GeV}) =$	$\begin{pmatrix} 1.005\\0\\0\\0\\0\\0 \end{pmatrix}$	0 1.005 0 0	0 0 1.72 0	0 0 0 1.72	$ \begin{array}{c} 0\\ 0\\ 0\\ -0.0242\\ 0.825\end{array} $	$\begin{pmatrix} C_{LL} \\ C_{RL} \\ C_{S_RS_L} \\ C_{S_LS_L} \end{pmatrix}$	$(\mu = m_Z)$
$\begin{pmatrix} C_{S_L}S_L \\ C_{T_L}T_L \end{pmatrix}$			0	0	0	0.825	$\begin{pmatrix} C_{S_L}S_L\\ C_{T_L}T_L \end{pmatrix}$	

RGE needs to be taken into account when connecting our UV models to phenomenology!

$\overrightarrow{C}^{T} = \left(C_{LL}, C_{RL}, C_{S_{R}S_{L}}, C_{S_{L}S_{L}}, C_{T_{L}T_{L}}\right)$

$$\gamma_{\text{QED}}^{T} = \begin{pmatrix} -2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & \frac{2}{3} & 0 & 0 \\ 0 & 0 & 0 & \frac{2}{3} & 4 \\ 0 & 0 & 0 & \frac{1}{12} & -\frac{20}{9} \end{pmatrix}$$

 $\gamma_{\text{OCD}}^T = \text{diag}(0, 0, -4, -4, 4/3)$

• General comments

QED rescales all operators and mix scalar-tensor 0

(QED/QCD vectorial \Rightarrow Do not mix different chiralities!)

QCD only rescales scalar and tensor 0 (Conservation vector current prevents RGE of vectors!)

EFT above EW scale: SMEFT

• **SMEFT:** EFT built with the *full* SM gauge group and field content **Example:** Current-current operators

4-fermion -
$$\mathcal{O}_{LQ}^{(3)} = \left(\bar{L}_L \gamma^\mu \tau^I L_L\right) \left(\bar{Q}_L \gamma_\mu \tau^I Q_L\right)$$

° At scales $\approx v_{ew}$ we need to switch EFTs!

- More symmetry in SMEFT: There are relations among low-energy EFT Wilson coefficients! There are no lepton non-universal C_{RL} interactions! (only quark vertex corrections) **Operators live in flavor space!**
 - 1. The C are tensors in flavor space of Wilson coefficients
 - 2. Anomalous dimensions have to be re-calculated in SMEFT above $\approx v_{\rm ew}$

Vertex corrections -

$$\mathcal{O}_{HQ}^{(3)} = \left(H^{\dagger}D_{\mu}^{I}H\right)\left(\bar{Q}_{L}\gamma^{\mu}\tau^{I}Q_{L}\right)$$
$$\mathcal{O}_{HL}^{(3)} = \left(H^{\dagger}D_{\mu}^{I}H\right)\left(\bar{L}_{L}\gamma^{\mu}\tau^{I}L_{L}\right)$$
$$\mathcal{O}_{Hud}^{(3)} = \left(\tilde{H}^{\dagger}D_{\mu}H\right)\left(\bar{u}_{R}\gamma^{\mu}d_{R}\right)$$

$$C_{LL}^{ij,\alpha\beta} \simeq - \left[\bar{C}_{LQ}^{(3)} \cdot V\right]^{ij,\alpha\beta} + \left[\bar{C}_{HQ}^{(3)} \cdot V\right]^{ij} + \left[\bar{C}_{HL}^{(3)}\right]^{\alpha\beta}$$
$$C_{RL}^{ij,\alpha\beta} \simeq \left[\bar{C}_{Hud}^{(3)}\right]^{ij} \delta^{\alpha\beta}$$

Imposing a flavor ansatz: Minimal Flavor violation

- SMEFT is a full-fledged flavored EFT
 - There are 59 flavor-diagonal operator vs. 2499 operators in the full flavor SMEFT at dim-6!
- It is often practical to impose flavor ansatz in C to guide the model building
- Minimal Flavor Violation (MFV): All the flavor violation in SM+BSM stems from just the SM Yukawas • One can implement MFV in the EFT using the **spurion analysis**

• MFV is useful because it transfers the flavor component of the GIM suppression to BSM **Example:** Contribution to the FCNC $b \rightarrow s\gamma$

 $\frac{e\ \bar{c}}{\Lambda_{\rm NP}^2} F_{\mu\nu} \bar{Q}_L \sigma^{\mu\nu} \underbrace{y_u y_u^{\dagger} y_d}_{\mathcal{U}} b_R \quad \Rightarrow \quad \frac{e\ \bar{c}}{\Lambda_{\rm NP}^2} F_{\mu\nu} \begin{pmatrix} \bar{U}_L \\ \bar{D}_L V^{\dagger} \end{pmatrix}$ y_d alone is to small

etry
$$\mathscr{G} = U(3)_Q \times U(3)_u \times U(3)_d$$
 to $\mathscr{L}_{\text{SMEFT}}$
 $d_R \sim (1,1,3), \quad y_u \sim (3,\overline{3},1), \quad y_d \sim (3,1,\overline{3})$

$$^{\mu\nu}m_u^2 V m_d b_R$$

Same yukawa suppression as in the SM!

$$C_{\gamma} = \frac{e \ \bar{c}}{\Lambda_{\text{NP}}^2} \ m_b \ y_t^2 \ V_{ts}^* V_{tb}$$

Summary of the EFT procedure

Cirigliano and Mussolf Prog.Part.Nucl.Phys. 71 (2013) 2-20

Low-energy: The realm of the hadrons

- QCD confines around and below energies ~ $\Lambda_{QCD} \approx$ 200 MeV

• Only the proton is (almost) really stable!

The <u>PDG</u> is phenomenologist's 1st best friend!

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. There are about 120 types of baryons.						Mesons qq Mesons are bosonic hadrons. There are about 140 types of mesons.					
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin	Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
р	proton	uud	1	0.938	1/2	π^+	pion	ud	+1	0.140	0
p	anti- proton	$\overline{u}\overline{u}\overline{d}$	-1	0.938	1/2	К-	kaon	sū	-1	0.494	0
n	neutron	udd	0	0.940	1/2	ρ^+	rho	ud	+1	0.770	1
Λ	lambda	uds	0	1.116	1/2	В ⁰	B-zero	db	0	5.279	0
Ω-	omega	SSS	-1	1.672	3/2	η_{c}	eta-c	٢	0	2 .980	0

The thousands of different decay modes of these hundreds of particles are a precious source of information

- Branching fraction of a decay channel i of a hadron h $\mathrm{Br}_i = \Gamma_i / \Gamma_h = \tau_h \Gamma_i$
- Only hadrons whose main decay channel is *weak*
 - 1. Flavor violations !
 - 2. Sensitivity to $E \gtrsim m_W$!

Connecting to the observables of the hadronic world

- Our Lagrangians are written in terms of quarks and our observables in terms of hadrons!
- **Observables** defined in terms of matrix elements

 $\mathcal{M} \sim \langle e', \nu', \dots; H'_1, H'_2, \dots \mid \overbrace{\mathcal{O}_{\ell} \times \mathcal{O}_a}^{\mathscr{I}} \mid e, \nu, \dots; H'_1, H'_2, \dots \rangle$ with Observables ~ $|\mathcal{M}|^2$

• Factorization: Wick's theorem typically leads to factorization of matrix element

$$\mathcal{M} \sim \langle e', \nu', \dots | \mathcal{O}_{\ell} | e, \nu, \dots \rangle \times$$
Perturbative matrix element

Very difficult to compute! They limit our capacity to learn about short distances

Interactions: $\mathscr{L}(u, d, s, c, b, e, \nu, G, F)$ Asymptotic states: $|\pi^{\pm}, \pi^{0}, K^{\pm}, D^{\pm}, B^{\pm}, p, n, \Lambda, ... \rangle$

• By asymptotic we mean hadrons with long life times ($\tau_{\text{weak}} \approx \frac{K_{\text{aons}}}{10^{-8}} - \frac{B-\text{mesons}}{10^{-12}}$ s vs. $\tau_{\text{EM}} \approx \frac{\pi^0}{10^{-17}}$ s OR $\tau_{\text{strong}} \approx \frac{\rho-\text{resonance}}{10^{-24}}$)

 $\langle H'_1, H'_2, \dots | \mathcal{O}_a | H'_1, H'_2, \dots \rangle$ Hadronic matrix element

• Hadronic matrix elements: Encapsulate all the nonperturbative-QCD information of the transition

Determinations of the hadronic brown muck

• General strategy:

- 1. Parametrize the matrix element and exploit discrete and Lorentz symmetries
- 2. Exploit approximate symmetries of QCD in perturbative (EFT) expansions **Relations** among hadronic elements that **increase predictability** in a **robust framework**

° Heavy-quark symmetry ($m_{c,b} \gg \Lambda_{\rm OCD}$) - Heavy quark effective theory

- 3. Measure or calculate hadronic matrix elements
 - Lattice QCD systematic approximation to nonperturbative QCD from a discrete and finite space-time
 - QCD sum rules, quark models, Ads/CFT, etc ... Allow to estimate semi-analytically

Example: Leptonic pion decay $\pi^- \rightarrow e^- \bar{\nu}$

$$\langle 0 \,|\, \bar{u}\gamma^{\mu}\gamma_5 d \,|\, \pi^-(p) \rangle = -\, ip^{\mu} f_{\pi}$$

 f_{π} is the pion decay constant $f_{\pi} \simeq 130$ MeV

- **Parity invariance:** Vector & Scalar are 0!
- Lorentz invariance: Tensor is 0!

- ° Isospin ($m_d \approx m_\mu$) and $SU(3)_F$ ($m_\mu \approx m_d \approx m_s$) in light quarks Chiral Perturbation Theory

More about the leptonic pion decay

• Chiral suppression: In the chiral limit $m_{\ell} \rightarrow 0$ the amplitude vanishes! $\mathcal{M} = \langle \ell^+ \nu_{\ell} | \mathcal{L}_{SM} | \pi^+ \rangle = \frac{4G_F V_{ud}}{\sqrt{2}} \langle \ell^+ \nu_{\ell} | \bar{\nu}_L \rangle$

• **Pseudoscalar operator:** Contribution of $d\gamma_5 u$?

Current algebra (PCAC): $\partial_{\mu}(\bar{d}\gamma^{\mu}\gamma_{5}u) = i(m_{d})$

• Pseudoscalar operator is chirally flipping \Rightarrow Not chirally suppressed

$$\Gamma_{\ell^2} = \frac{G_F |V_{ud}|^2 f_{\pi}^2}{8\pi} m_{\pi} m_{\ell^2}^2 \left(1 - \frac{m_{\ell^2}^2}{m_{\pi}^2} \right)^2 \left| C_{LL} - C_{RR} - \frac{m_{\pi}^2}{m_e (m_d + m_s)} \left(C_{S_R S_L} - C_{S_L S_L} \right) \right|^2$$

$$\frac{\partial \gamma_{\mu} P_{L} \ell |0\rangle \langle 0| \bar{d} \gamma^{\mu} P_{L} u |\pi^{+}\rangle}{\sqrt{2}} = \frac{G_{F} f_{\pi} V_{ud}}{\sqrt{2}} m_{\ell} \bar{\nu}_{\ell} P_{R} e$$

Br(
$$\pi^+ \to \mu^+ \nu_{\mu}$$
) = 99.98770(4) %
Br($\pi^+ \to e^+ \nu_e$) = 1.230(4) × 10⁻⁴

$$+ m_{u})\bar{d}\gamma_{5}u \quad \Rightarrow \quad \langle 0 | \bar{d}\gamma_{5}u | \pi^{+} \rangle \equiv f_{P} = if_{\pi} \frac{m_{\pi}^{2}}{m_{d} + m_{u}}$$

t chirally suppressed!

Physical results

SM: $|V_{ud}| = 0.97438(12)$ BSM-Vector: $\Lambda_{LL} \approx$ 1 TeV BSM-Scalar: $\Lambda_{S_LS_L} \approx 1000 \text{ TeV}!$

Form factors

- Hadron \rightarrow Hadron' transitions: Hadronic matrix elements depend on Lorentz scalar $q^2 = (p p')^2$ • Can be **parametrized** in terms of q^2 -dependent functions called form factors
 - Meson \rightarrow Meson form factors

 $\langle \pi^{0}(p') | \bar{s}\gamma_{\mu}d | K^{+}(p) \rangle = f_{+}(q^{2})(p_{\mu} + p'_{\mu}) + f_{-}(q^{2})(p_{\mu} - p'_{\mu})$

• No axial form factors! Scalar obtained with current algebra

• Baryon \rightarrow Baryon form factors

$$\langle B_2(p') \, | \, \bar{d}\gamma_\mu u \, | \, B_1(p) \rangle = \bar{u}_2(p') \Big[f_1(q^2) \, \gamma_\mu + i \frac{f_2(q^2)}{m_{B_1}} \, \sigma_{\mu\nu} q^\nu + \frac{f_3(q^2)}{m_{B_1}} \, q_\mu \Big] u_1(p)$$

$$P_2(p') \, | \, \bar{d}\gamma_\mu \gamma_5 u \, | \, B_1(p) \rangle = \bar{u}_2(p') \Big[g_1(q^2) \, \gamma_\mu + i \frac{g_2(q^2)}{m_{B_1}} \, \sigma_{\mu\nu} q^\nu + \frac{g_3(q^2)}{m_{B_1}} \, q_\mu \Big] \gamma_5 u_1(p)$$

$$\langle B_2(p') \,|\, \bar{d}\gamma_\mu u \,|\, B_1(p) \rangle = \bar{u}_2(p') \Big[f_1(q^2) \,\gamma_\mu + i \frac{f_2(q^2)}{m_{B_1}} \,\sigma_{\mu\nu} q^\nu + \frac{f_3(q^2)}{m_{B_1}} \,q_\mu \Big] u_1(p)$$

$$\langle B_2(p') \,|\, \bar{d}\gamma_\mu \gamma_5 u \,|\, B_1(p) \rangle = \bar{u}_2(p') \Big[g_1(q^2) \,\gamma_\mu + i \frac{g_2(q^2)}{m_{B_1}} \,\sigma_{\mu\nu} q^\nu + \frac{g_3(q^2)}{m_{B_1}} \,q_\mu \Big] \gamma_5 u_1(p)$$

• Both vector and axial form factors! (pseudo)scalar with current algebra and 3 more tensor form factors for BSM Total of **9 form factors!**

Important points about form factors and friends

- 1. Hadronic complexity can lead to extended sensitivity to UV physics
- 2. Use every trick under your sleeve to get rid of them!

,
$$\langle \pi^0(p') | \bar{s}\sigma_{\mu\nu}d | K^+(p) \rangle = f_T(q^2)(p_\mu p'_\nu - p'_\mu p_\nu)$$

Only in BSM!

Exploiting SU(3)_F: e.g. hyperon FFs

• Hyperon decays: Form factors related by $SU(3)_F$ symmetry

• Semileptonic decays $B_1 \to B_2 e \bar{\nu}_e$ triggered by $s \to de^- \bar{\nu}_e$ decays

- $q = -1 \qquad q = 0$ • Vector FFs **predicted** in terms of *p* and *n* EM charges!
- Further $SU(3)_F$ expansions involve baryon-mass differences Δ !

$$\langle B_a | \mathcal{O}_c | B_b \rangle = F_0 f_{cab} + D_0 d_{cab}$$
 Reduced ME
Group theory factors

^o Axial FFs **predicted** by axial *np* coupling and one extra channel

Rates of the 5 decay channels depend only on 2 numbers! (@ LO in $SU(3)_F$)

$$\frac{G_F^2 |V_{us}|^2 \Delta^5}{60\pi^3} \left[f_1(0)^2 + 3g_1(0)^2 \right]$$

Flavor physics at work: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

• Prototypical very-rare kaon decay: $\Delta S = 1$ FCNC

Penguin diagram

Box diagram

• Relevant form factors related by isospin to CCs

$$Br(K^+ \to \pi^+ \nu \bar{\nu}) = \frac{\alpha^2 |V_{ts} V_{td}^*|^2 Br(K^+ \to \pi^0 e^+ \nu_e)}{2\pi^2 |V_{us}|^2} \sum_{\ell} |C_{\nu_{\ell}}|$$
$$\simeq \frac{\alpha^2}{2\pi^2} \lambda^{10} \sum_{\ell} |C_{\nu_{\ell}}|^2$$

• Effective Lagrangian

$$\mathscr{L}_{SM} = -\frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* \frac{\alpha}{2\pi} \sum_{\ell} C_{\nu_{\ell}} (\bar{d}\gamma^{\mu} P_L d) (\bar{\nu}_{\ell} \gamma_{\mu} \nu_{\ell})$$

Wilson Coefficient: $C_{\nu_{\ell}} = \frac{1}{s_w^2} \left(\frac{V_{cs} V_{cd}^*}{V_{ts} V_{td}^*} X_c^{\ell} + X_t \right)$
Inami-Lin function

Physical results

$$Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{SM} = 8.55(4) \times 10^{-11}$$

 $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{expt} = 1.14(36) \times 10^{-10}$
 $\Lambda_{NP} \gtrsim 100 \text{ TeV!}$

Flavor at work: Tutorial

- Let's connect a UV model to a $Br(K^- \to \pi^- \nu \bar{\nu})$ an derive a bound on it's mass scale • We have a Z' boson of mass $m_{Z'}$ that is coupled to the SM with $\mathscr{L} \supset \left(g_{ij}^Q \bar{Q}_L^i \gamma^\mu Q_L^j \right)$

 g^Q is a matrix in general real matrix in flavor space and g_L a universal coupling for leptons. Calculate

- 1. Matching of the UV model to an SMEFT operator.
- 2. Match the SMEFT operator to the operator in low-energy EFT ($C_{\nu_{e}}^{\text{SM}} \simeq 10$)

$$\mathcal{L}_{\rm EFT} \supset -\frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* \frac{\alpha}{2\pi} \sum_{\ell} C_{\nu_{\ell}} (\bar{d}\gamma^{\mu} P_L d) (\bar{\nu}_{\ell} \gamma_{\mu} \nu_{\ell})$$

- 3. Estimate the lower bound on $m_{Z'}$ given by $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{expt} = 1.14(36) \times 10^{-10}$
- 4. How does this bound change if we impose MFV?

$$\dot{L} + g^L \bar{L}_L^{\alpha} \gamma^{\mu} L_L^{\alpha} \right) Z'_{\mu}$$