Dark Matter Problems Anne Green

1. Dark matter direct detection

(problem originally formulated by David Cerdeño)

In <u>Planetary Dependence of Melanoma</u> (Zioutas and Valachovic, 2018), the authors claim to have observed a correlation between the occurrence of melanoma in the human skin and the annual modulation in the dark matter (DM) flux that arrives to the Earth.

- Assume that the DM is a WIMP with mass of order 100 GeV. Calculate the number of expected DM recoils on the human skin over a whole human lifetime. Use the upper limit on the DM-nucleus scattering from recent experiments (LZ for example).
- Consider the possibility of lighter DM particles, so that the number density is larger, and the cross-section less tightly constrained by experiments. How large must the scattering cross section be so as to have a substantial number of interactions?
- Are there any sources of background that can give similar recoils (and that we are exposed to on a daily basis)?
- Based on all of the above, do you think that it is plausible that DM causes skin cancer?

2. Primordial Black Hole dark matter

(As we'll see in lecture 3) Primordial Black Holes (PBHs) are black holes that may form in the early Universe. Following the LIGO-Virgo detection of gravitational waves from the mergers of $\sim 10 M_{\odot}$ black hole binaries, PBHs have received a lot of attention, in particular as a DM candidate. In this question we'll work through the details of some simple calculations regarding the abundance of PBHs.

• PBHs that form during radiation domination have mass roughly equal to the horizon mass, $M_{\rm H} = tc^3/G$, at the time they form. Show that the fraction of DM in the form of PBHs today, $f_{\rm PBH}$, is related to the initial abundance of PBHs, $\beta \equiv \rho_{\rm PBH}/\rho_{\rm rad}$ where $\rho_{\rm PBH}$ and $\rho_{\rm rad}$ are the densities of PBHs and radiation respectively at the time the PBHs form, by

$$f_{\rm PBH} \sim 10^9 \left(\frac{M}{M_{\odot}}\right)^{-1/2} \beta$$
 (1)

For this rough calculation you can, e.g., assume the universe is matter dominated from radiation-matter equality to the present day, and ignore the variation in the number of relativistic degrees of freedom

• The initial abundance of PBHs is related to the mass variance (the typical size of density perturbations) at horizon crossing, $\sigma(M)$, by

$$\beta(M) \sim \operatorname{erfc}\left(\frac{\delta_{\mathrm{c}}}{\sqrt{2}\sigma(M)}\right),$$
(2)

where $\delta_{\rm c}\approx 0.5$ is the threshold for PBH formation.

Calculate the values of $\sigma(M)$ required for PBHs with mass M equal to

i) $1M_{\odot}$, ii) 10^{15} g,

to make up all of the DM ($f_{\rm PBH} = 1$).

What are the implications of the dependence of β on $\sigma(M)$?