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Basic idea, in a cartoon

[R. J. Levis et al, Science 292, 709 (2001)]
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Mono-chromatic lasers

I Lasers (coherent, monochromatic, intense light)
promised to deliver precise control of quantum systems

I Initially, the �rst attempts to control molecules (i.e.
�photo-selective chemistry�) were based on tuning the
laser frequency to speci�c bonds

I Those attempts were seldom successful, due to
�intramolecular vibrational redistribution�.

I Analogous problems will appear in other quantum
control attempts, beyond molecular photo-chemistry.
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Interferences, and the �two pathway� scheeme

[P. Brumer and M. Shapiro, Chem. Phys. Lett. 126, 541 (1986)]

I Use of two monochromatic lasers with commensurate
frequencies for creating quantum interference between
two reaction pathways.

I By tuning the phase di�erence between the two laser
�elds, it is possible to control the branching ratios of
molecular reactions.

I It produces modest results, perhaps a modulation of
50% in branching rations of chemical reactions.
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Pump and dump

[D. J. Tannor and S. A. Rice J. Chem. Phys. 83, 5013 (1985)]

I Limitations: knowledge of the potential energy surfaces,
competing processes.
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Adaptive feedback control
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The learning loop

[H. Rabitz et al, Science 288, 824 (2000)]
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Laser technology: The road to atto-second physics

[Krausz & Ivanov, Rev. Mod. Phys. 81, 169 (2009)]
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Laser technology: increase in intensities
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Examples of AFC experiments: Photo-dissociation
reactions in molecules

[�Coherent control of bond breaking in amino acid complexes
with tailored femtosecond pulses�, Laarmann et al, J. Chem.
Phys. 127, 201101 (2007)]
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Examples of AFC experiments: High harmonic
generation

[�Shaped-pulse optimization of coherent emission of
high-harmonic soft X-rays�, R. Bartels, Nature 406, 164
(2000)]
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Examples of AFC experiments: other

I Multi-photon ionization of atoms.

I Electronic excitation in molecules (�uorescence is used
as the probe to build the merit function).

I Molecular alignment.

I Photo-induced electron transfer between molecules

I Photo-isomerization of molecules.

I etc.



QOCT for

electron

dynamics

Alberto Castro

Some

experiments

Pioneering schemes

Adaptive feedback
control

Some theory

Quantum optimal
control theory

QOCT for
many-electron systems

QOCT for hybrid
quantum-classical
systems

What makes experimental �control� possible

I Existence of laser sources, since the 1960's.

I Femto-second laser sources, which allow for fast
processes (avoiding decoherence), and extending the
band-width.

I High-intensities.

I Laser shapers.

I Learning-loops algorithms.
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�Classical� optimal control theory

Typical formulation of a (general) optimal control problem:

I Dynamical system:

ẋ(t) = f(x(t), u(t), t)

x(0) = x0

Typically, u = u(t). But it can be a set of parameters
whatsoever.

I Minimize the cost functional:

F [x, u] = F terminal[x(T ), u] +

∫ T

0
dt L(x(t), u(t)]

I Since u→ x[u], it amounts to minimizing

G[u] = F [x[u], u]
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Essential theoretical results

I Pontryagin's minimum principle (1956)
[V.G. Boltyanskii, R.V. Gamkrelidze, and L.S. Pontryagin,

�Towards a theory of optimal processes�, (Russian), Reports Acad.

Sci. USSR 110, 1 (1956)]

It provides a necessary condition for the minimum � in
practice, typically, an expression for ∇G[u] so that the
equation ∇G[u] = 0 can be posed.

I Hamilton-Jacobi-Bellman equation (1954)
(Theory of �dynamic programming�, Richard Bellman)
[R.E Bellman, �Dynamic Programming and a new formalism in the

calculus of variations� Proc. Nat. Acad. Sci. 40, 231 (1954)]
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Essential theoretical results

I Simpler approaches: direct or gradient-less algorithms.
They only require a means to compute G[u] (i.e. a
method to propagate the dynamical equation and
compute the resulting cost or target functional).

I The most fashionable, the families of evolutionary or
genetic algorithms.



QOCT for

electron

dynamics

Alberto Castro

Some

experiments

Pioneering schemes

Adaptive feedback
control

Some theory

Quantum optimal
control theory

QOCT for
many-electron systems

QOCT for hybrid
quantum-classical
systems

Pontryagin's minimum principle

If we de�ne the �Hamiltonian�

H(λ(t), x(t), u(t), t) = λ†(t)f(x(t), u(t), t) + L(x(t), u(t))

where λ is the �costate�, an object of the same kind of x, the
following holds:

1. The optimal control u0, trajectory x0 and costate λ0

minimize H at all times:

H(λ0(t), x0(t), u0(t), t) ≤ H(λ(t), x(t), u(t), t)

2. The costate veri�es the following equation of motion:

λ̇0†(t) = λ0†(t)
δf

δx
(x0(t), u0(t)) +

δL

δx
(x0(t), u0(t))

λ0†(T ) =
δ

δx
F terminal[x0(T ), u0(T )]



QOCT for

electron

dynamics

Alberto Castro

Some

experiments

Pioneering schemes

Adaptive feedback
control

Some theory

Quantum optimal
control theory

QOCT for
many-electron systems

QOCT for hybrid
quantum-classical
systems

Quantum optimal control theory

Ĥ = Ĥ[u1, . . . , uM ; t]

i
d

dt
|Ψ(t)〉 = Ĥ[u; t]|Ψ(t)〉

|Ψ(t0)〉 = |Ψ0〉

Ψ(t0) −→ Ψ[u](t) −→ Ψ[u](T )

Maximize a quantity

F = F [Ψ[u](t)] ,

that depends on the system evolution, or �nal state, or both.
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Main equations: computation of the gradient

F [Ψ, u] = J1[Ψ(T )] + J2[u]

G[u] = F [Ψ[u], u]

∂G

∂um
=

∂J2

∂um
+ 2Im

∫ T

0
dt〈χ(t)| ∂Ĥ

∂um
|Ψ(t)〉 ,

where the �costate� χ veri�es:

i
d

dt
|χ(t)〉 = Ĥ(t)|χ(t)〉 ,

|χ(T )〉 =
δ

δΨ∗(T )
F [Ψ(T )]
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Main equations: computation of the gradient
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G[u] = F [Ψ[u], u]

∂G

∂um
=

∂J2

∂um
+ 2Im

∫ T

0
dt〈χ(t)| ∂Ĥ
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Derivation
1 A system is governed by the Hamiltonian
Ĥ(t) = Ĥ0(t) + f(t)V̂ , so that its evolution is given by:

i
∂

∂t
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
,

Show that, to �rst order in f , the change in the value of the
expectation value of some observable Â due to the presence
of the perturbation f(t)V̂ is given by:

δA(t) = 〈Â〉(t)− 〈Â〉f=0(t) =

∫ ∞
−∞

dt′ f(t′)χÂ,V̂ (t, t′) ,

where the linear response function is given by:

χÂ,V̂ (t, t′) = −iθ(t− t′)Tr{ρ̂(t0)
[
ÂH(t), V̂H(t′)

]
} .

X̂H(t) = Û(t0, t)X̂Û(t, t0) is the Heisenberg representation
of X̂, where Û(t, t0) is the evolution operator in the absence
of the perturbation.
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Derivation
Hints:

1. Expand ρ̂(t) in a power series in f :

ρ̂(t) =

∞∑
n=0

ρ̂n(t) ,

where ρ̂0 is the unperturbed solution, ρ̂1 is linear in f ,
etc.

2. Find the di�erential equations that verify ρ̂0 and ρ̂1, and
verify that they are equivalent to the integral equations:

ρ̂0(t) = Û(t, t0)ρ̂(t0)Û(t0, t) ,

ρ̂1(t) = −i

∫ t

t0

dt′ Û(t, t′)
[
f(t′)V̂ , ρ̂0(t′)

]
Û(t′, t) ,

3. To �rst order in f ,

δA(t) = Tr{ρ̂1(t)Â} .

Substituting ρ̂1(t), after some algebra one arrives to the
�nal result.
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Derivation
2 A system is governed by the Hamiltonian
Ĥ[u](t) = Ĥ+ ε[u](t)V̂ , so that its evolution is given by:

i
∂

∂t
ρ̂[u](t) =

[
Ĥ[u](t), ρ̂[u](t)

]
, ρ̂[u](t0) = ρ̂init ,

where u is a real parameter that determine the precise shape
of the real function ε.
Given the function G[u] = Tr{ρ̂[u](tf )Â} (the expectation

value of some observable Â at some �nal time tf ), show that:

∂G

∂u
[u] = −i

∫ tf

t0

dτ
∂ε

∂u
[u](τ)Tr{ρ̂[u](τ)

[
Â[u](τ), V̂

]
} .

where Â[u] is de�ned as:

∂

∂t
Â[u](t) = −i

[
Ĥ[u](t), Â[u](t)

]
,

Â[u](tf ) = Â .

These are the �QOCT equations�.
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Derivation
Hints:

1. Obviously,∂G∂u [u] = lim∆u→0 ∆u−1(G[u+ ∆u]−G[u]).

2. Note that G[u] corresponds to the propagation of the
system with the Hamiltonian Ĥ[u](t), whereas
G[u+ ∆u] corresponds to the propagation of the system
with:

Ĥ[u+ ∆u](t) = Ĥ[u](t) + ∆u
∂ε

∂u
[u]V̂ .

3. Now we can use directly the LRT result of the previous
problem, by making the identi�cations,

Ĥ0(t) = Ĥ[u](t), f(t) = ∆u
∂ε

∂u
[u](t) .

and we arrive at:

∂G

∂u
[u] =

∫ ∞
t0

dτ
∂ε

∂u
[u](τ)χÂ,V̂ (tf , τ) .
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Derivation

3 Show that, for pure systems
(ρ̂[u](t) = |Ψ[u](t)〉〈Ψ[u](t)|), the previous result is:

∂G

∂u
[u] = 2Im

∫ tf

t0

dτ
∂ε

∂u
[u](τ)〈χ[u](τ)|V̂ |Ψ[u](τ)〉 .

∂

∂t
|χ(t)〉 = −iĤ[u](t)|χ(t)〉 ,

|χ(tf )〉 = Â|Ψ[u](tf )〉 ,
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Continuous control function

Ĥ(t) = Ĥ0 + u(t)V̂

F [Ψ, u] = J1[Ψ(T )] + α

∫ T

0
dt u2(t)

G[u] = F [Ψ[u], u]

This is a linear-quadratic problem whose solution veri�es:

δG

δu(t)
= 2αu(t) Imχ(t)|V̂ |Ψ(t)〉 = 0

Some of the most succesful algorithms originally developed
for QOCT (Krotov, Rabitz) assume this form. Cannot be
used for more general target de�nitions, especially if one
wishes to add constraints to the form of u.
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Femtosecond laser pulse shaping for enhanced
ionization

[AC, E. Räsänen, A. Rubio, and E. K. U. Gross, EPL 87, 53001 (2009)]

I Target: Maximal ionization
of H+

2 molecule (clamped
nuclei).

I F [Ψ(T )] = 〈Ψ(T )|Ψ(T )〉 -∑
bound |〈Ψ|ΨI〉|2

I Use of absorbing boundary
conditions

I Use of direct optimization
algorithm.

I Expansion of control �eld
into a Fourier series ⇒
automatic existence of a
frequency constraint.

I Further constraints: total
length (5fs) and total �uence.
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Femtosecond laser pulse shaping for enhanced
ionization

I Using a stringent frequency
cut-o�, the optimization
attempts to build a peak with
maximum intensity. With
short, intense pulses, most
ionization occurs during the
maximum.

I With parallel orientation,
zero carrier envelope phase
(half-cycle pulse), and π/2
with perpendicular
orientation.
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Femtosecond laser pulse shaping for enhanced
ionization

I Higher cut-o� frequency
implies more complicated
structure for the optimal
pulse.

I Ionization is not a direct
ground-state to continuum
step.
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Optimal Control of Quantum Rings by Teraherz
Laser Pulses

[E. Räsänen, AC, J. Werschnik, A. Rubio, and E. K. U. Gross, Phys.

Rev. Lett. 98, 157404 (2007)]
I Electron trapped in a ring

edged into a 2D
semiconductor
heterostructure (2D electron
gas).

I Levels are coupled in a
consecutive fashion, ordered
by angular momentum.

I Use of a two-component laser
pulse.

I The target is the population
of any of the levels, from any
of the other levels (precise
control over the electronic
current).
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Optimal Control of Quantum Rings by Teraherz
Laser Pulses
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TDDFT in a nutshell
I Propagating the many-electron Schrödinger equation is

a computationally demanding task.

i
∂

∂t
Ψ(x1, . . . , xN ; t) = Ĥ(t)Ψ(x1, . . . , xN ; t) .

I Time-dependent density-functional theory substitutes it
by the set of �time-dependent Kohn-Sham equations�:

i
∂ϕi

∂t
(~r, t) =

[
−

1

2
∇2

ϕi(~r, t) + vHartree[n](~r, t) + vxc[n](~r, t) + vext(~r, t; u)

]
ϕi(~r, t) ,

n(~r, t) =

N∑
i=1

2|ϕi(~r, t)|
2
.

I These are the equations of a non-interacting system of
electrons, whose time-dependent density is identical to
the real one.

I All observables are functionals of the time-dependent
one-electron density n, even if sometimes the functional
de�nition is unknown.
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QOCT + TDDFT

Also in:

AC and E. K. U. Gross, �Quantum Optimal Control�, in �Fundamentals

of Time-Dependent Density Functional Theory�, edited by M.A.L.

Marques, N. Maitra, F. Nogueira, E.K.U Gross. and Angel Rubio

(Springer, Berlin, 2012), pages 265-276.
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QOCT + TDDFT
I We have a system of N electrons, driven by an external

potential vext(~r, t, u).
I The time-dependent density is therefore determined by
u:

u −→ n[u](~r, t) = 〈Ψ[u](t)|n̂(~r)|Ψ[u](t)〉
I The objective is to maximize some function G of the

control parameters u, de�ned in terms of a functional of
the density:

G[u] = F̃ [n[u], u] .

I Since the de�nition is given in terms of the density,
everything can be reformulated for the Kohn-Sham
system, and the optimization will be equivalent. Since
we use the Kohn-Sham substitution, we may use the
Kohn-Sham orbitals instead:

F [ϕ[u], u] ≡ F̃ [n[u], u] , n[u](~r, t) =
∑
|ϕi[u](~r, t)|2 .
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potential vext(~r, t, u).
I The time-dependent density is therefore determined by
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I The objective is to maximize some function G of the

control parameters u, de�ned in terms of a functional of
the density:

G[u] = F̃ [n[u], u] .

I Since the de�nition is given in terms of the density,
everything can be reformulated for the Kohn-Sham
system, and the optimization will be equivalent. Since
we use the Kohn-Sham substitution, we may use the
Kohn-Sham orbitals instead:
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Optimal control theory equations for TDDFT (terminal target only):

∇uG[u] = ∇uF [ϕ[u], u] +

2Im

[
N∑
i=1

∫ T

0

dt 〈λi[u](t)|∇uĤ[n[u](t), u, t]|ϕi[u](t)〉

]

ϕ̇[u](t) = −iĤ[n(t), u, t]ϕ[u](t) ,

ϕ
u
(0) = ϕ

0
,

λ̇[u](t) = −i
[
Ĥ[n(t), u, t] + K̂[ϕ[u](t)]

]
λ[u](t) ,

λ[u](T ) =
δF

δϕ∗
[ϕ[u](T ), u] .
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QOCT + TDDFT

λ̇[u](t)=−i
[
Ĥ
†
[n[u](t), u, t] + K̂[ϕ[u](t)]

]
λ[u](t) ,

λ̇i[u](t) = −iĤ†[n[u](t), u, t]λi[u](t)− i
N∑

j=1

K̂ij [ϕ[u](t)]λj [u](t)

〈~r|K̂ij [ϕ[u](t)]|λj [u](t)〉 =

−2iϕi[u](~r, t)Im

[∫
d3r′λj [u]∗(~r′, t)fHxc[n[u](t)](~r, ~r′)ϕj [u](~r′, t)

]

fHxc[n[u](t)](~r, ~r′) =
1

|~r − ~r′| + fxc[n[u](t)](~r, ~r′)
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Optimal laser control of the harmonic generation
He atom, EXX:

He atom, EXX, frozen H+xc:

I Target: selective
enhancement or quenching of
harmonics:

F [ϕ] =
∑
k

αk max
ω≈kω0

{log10 H[ϕ](ω)}

H(ω) = |
∫ T

0

dt
d2

dt2
〈~̂µ〉(t)e−iωt|2

I Time-dependent target, it
depends on the full evolution
of the system.

I �TDDFT-friendly� target: it
only depends on the
time-dependent density.
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Optimal laser control of the harmonic generation
He atom, EXX: He atom, froze H+xc
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The Ehrenfest model for molecular dynamics

Ĥ[q, p, u, t] = Hclas[q, p, u, t]Î + Ĥquantum[q, p, u, t] .

q̇a(t) =
∂Hclas

∂pa
[q(t), p(t), u, t]

+〈Ψ(t)|∂Ĥquantum

∂pa
[q(t), p(t), u, t]|Ψ(t)〉

ṗa(t) = −∂Ĥclas

∂qa
[q(t), p(t), u, t]

−〈Ψ(t)|∂Ĥquantum

∂qa
[q(t), p(t), u, t]|Ψ(t)〉

Ψ̇(x, t) = −iĤquantum[q(t), p(t), u, t]Ψ(x, t) ,
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Selective photo-dissociation: H+
3

F [n, q, p] = (~p1(T )−~p2(T ))2+(~p1(T )−~p3(T ))2−(~p2(T )−~p3(T ))2

Tlaser ≈ 7 fs
Ipeak ≈ 1.8 1013W/cm

2

Ecutoff = 2.0 a.u. (100 degrees of freedom)
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How fast can we (Coulomb) explode a metal
cluster

I Coulomb explosion: fast strong ionization, followed by fast
disintegration of the system.

I It can be helped with resonantly enhanced multi-photon
ionization: tuning of the laser pulse to some excitation (the
surface plasmon in the case of a cluster)

I But:

I As the electrons disappear, the resonance frequency
blue-shifts.

I As the nuclei separate, the resonance frequency
red-shifts.

I The topic was explored with the EMD-TDDFT model:
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How fast can we (Coulomb) explode a cluster

F [n, q, p] = −
∫

d3r n(~r, T ) Tlaser ≈ 16 fs
Ipeak ≈ 1.0 1012W/cm2 Ecutoff = 0.5 a.u.
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