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@8% reaction n
L

Precursor

reaction 2
selective product formation using
optimally-tailored, strong-field laser
pulses: ~fs

[R. J. Levis et al, Science 292, 709 (2001)]
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WA \/ono-chromatic lasers

dynamics

Alberto Castro > Lasers (coherent, monochromatic, intense light)
promised to deliver precise control of quantum systems

» Initially, the first attempts to control molecules (i.e.
“photo-selective chemistry”) were based on tuning the
laser frequency to specific bonds

> Those attempts were seldom successful, due to
mtramolecular vibrational redistribution”.

D) oscillatory |V, Vi, Vo, Vi, Vi, Vi
A <100 fs | b= 2V 0’1 1000ps =

v,;=2) v— V=

Energy

pump

1GS»
0 time

» Analogous problems will appear in other quantum
control attempts, beyond molecular photo-chemistry.
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[P. Brumer and M. Shapiro, Chem. Phys. Lett. 126, 541 (1986)]

> Use of two monochromatic lasers with commensurate
frequencies for creating quantum interference between
two reaction pathways.

» By tuning the phase difference between the two laser
fields, it is possible to control the branching ratios of
molecular reactions.

> |t produces modest results, perhaps a modulation of
50% in branching rations of chemical reactions.
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[D. J. Tannor and S. A. Rice J. Chem. Phys. 83, 5013 (1985)]
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v
> Limitations: knowledge of the potential energy surfaces,
competing processes.
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Adaptive feedback
control VOLUME 68, NUMBER 10 PHYSICAL REVIEW LETTERS 9 MARCH 1992

Teaching Lasers to Control Molecules

Richard S. Judson®’
Center for Computational Engineering, Sandia Nationat Laboratories, Livermore, California 94551-0969

Herschel Rabitz
Department of Chemisiry, Princeton University, Princeton, New Jersey 08544
(Received 26 August 1991)

We simulate a method to teach a laser pulse sequences to excite specified molecular states. We use a
learning procedure to direct the production of pulses based on “fitness™ information provided by a labo-
ratory measurement device. Over a scries of pulses the algorithm learns an optimal sequence. The ex-
perimental apparatus, which consists of a laser, a sample of molecules, and a measurement device, acts
as an analog computer that solves Schrodinger's equation exactly, in real time. We simulate an ap-
paratus that learns to excite specified rotational states in a diatomic molecule.
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E-field

[H. Rabitz et al, Science 288, 824 (2000)]
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Adaptive feedback - 107 Controlled microwave voltage,
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[Krausz & lvanov, Rev. Mod. Phys. 81, 169 (2009)]
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FIG. 1. (Color online) Optimal tailoring of intense femtosecond light can be
used to preferentially break peptide bonds, such as the indicated N1-C3
bond in the amine acid complex Ac-Phe-NHMe. o

[‘Coherent control of bond breaking in amino acid complexes
with tailored femtosecond pulses”, Laarmann et al, J. Chem.
Phys. 127, 201101 (2007)]
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Enhancement

[‘Shaped-pulse optimization of coherent emission of

high-harmonic soft X-rays”, R. Bartels, Nature 406, 164
(2000)]




QOCT for
electron
dynamics

Alberto Castro

Adaptive feedback
control

Examples of AFC experiments: other
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Multi-photon ionization of atoms.

Electronic excitation in molecules (fluorescence is used
as the probe to build the merit function).

Molecular alignment.
Photo-induced electron transfer between molecules
Photo-isomerization of molecules.

etc.
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» Existence of laser sources, since the 1960’s.

» Femto-second laser sources, which allow for fast
processes (avoiding decoherence), and extending the
band-width.

» High-intensities.
» Laser shapers.

» Learning-loops algorithms.
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» Dynamical system:

a(t) = fla(t),u(t),t)
z(0) = =

Typically, w = u(t). But it can be a set of parameters
whatsoever.

» Minimize the cost functional:

_ T
Fla,u] = Fterminal [y () o] 4 /0 dt L(z(t), u(t)]

» Since u — x[u], it amounts to minimizing
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» Pontryagin's minimum principle (1956)
[V.G. Boltyanskii, R.V. Gamkrelidze, and L.S. Pontryagin,
S¢ : “Towards a theory of optimal processes”’, (Russian), Reports Acad.
A Sci. USSR 110, 1 (1956)]
It provides a necessary condition for the minimum — in
practice, typically, an expression for VG|u| so that the
equation VG|[u] = 0 can be posed.
» Hamilton-Jacobi-Bellman equation (1954)
(Theory of “dynamic programming”, Richard Bellman)

[R.E Bellman, "Dynamic Programming and a new formalism in the
calculus of variations” Proc. Nat. Acad. Sci. 40, 231 (1954)]
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» Simpler approaches: direct or gradient-less algorithms.

s L They only require a means to compute G[u] (i.e. a
method to propagate the dynamical equation and
compute the resulting cost or target functional).

» The most fashionable, the families of evolutionary or
genetic algorithms.
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H(A(), z(t), ult),t) = AT(0) f(2(t), u(t), t) + L(x(t), u(t))

where X is the “costate”, an object of the same kind of z, the
following holds:

1. The optimal control u°, trajectory 20 and costate A°
minimize H at all times:

HOO(t), 20(),u0(2),£) < HOAE), 2(2), u(t), )
2. The costate verifies the following equation of motion:

301 (1) = XU(0) 2 (a(0), (1)) + O (2°(0), (1)

iFterminaI [xU(T), u? (1]

\T(T) = =
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H = Hluy,...,uy;t]

.d -
i) = A
W(ty)) = [Wo)

U(to) — W[u](t) — W[ul(T)

Maximize a quantity
F = F[¥[u(t)],

that depends on the system evolution, or final state, or both.
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F[V,u] = J1[Y(T)] + J2[u]
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F[V,u] = J1[Y(T)] + J2[u]
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FlW,u] = L{W(T)] + Ja[u]

oG J: r O
et A QIm/ dt{(x(t)|—¥ (1)),
0 O,

Oy, Ouyy,

where the “costate” y verifies:
d -
i X(®) = H)|x(®)),

X(T) = o PLV(T)
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1 A system is governed by the Hamiltonian
H(t) = Ho(t) + f(t)V, so that its evolution is given by:

Alberto Castro

9 p(t) = [0, 0]

Show that, to first order in f, the change in the value of the
expectation value of some observable A due to the presence
of the perturbation f(t)V is given by:

A0 = (A)(0) — (A)poolt) = [t S0 (8.0).

where the linear response function is given by:
X () = =100 =) Tr{p(to) |An(t), Vur ()]}
XHA(t) = U(tq,t)Xﬁ(t,to) is the Heisenberg representation

of X, where U(t,tp) is the evolution operator in the absence
of the perturbation.
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Hints:
1. Expand p(t) in a power series in f:

Aty = balt),
n=0

Alberto Castro

where py is the unperturbed solution, pq is linear in f,
etc.

2. Find the differential equations that verify py and pq, and
verify that they are equivalent to the integral equations:

polt) = O(tto)alt)U(to,1),

a) = i / at' (1) [£()7 . polt)| (. 1).

3. To first order in f,
SA(t) = Tr{pu(t) A} .

Substituting p1(t), after some algebra one arrives to the
final result.
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2 A system is governed by the Hamiltonian
Hlu](t) = H + €[u](t)V, so that its evolution is given by:

Alberto Castro

i5plul(6) = [Au)(1), plu)(0)]  pfu] (o) = P

where u is a real parameter that determine the precise shape
of the real function e.

Given the function G[u] = Tr{p[u](t;)A} (the expectation
value of some observable A at some final time tr), show that:

Selul =i [ dr 2C (e (plul(r) [, V]

0 u

where Afu] is defined as:

SAW) = i [Al), Al)]
Aplty) = A,

These are the “QOCT equations”.
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Hints:
1. Obviously,%[u] = limay 0 Au"HGlu + Au] — G[u)).
2. Note that G[u] corresponds to the propagation of the
system with the Hamiltonian H[u](t), whereas
G[u+ Au] corresponds to the propagation of the system
with:

Alberto Castro

Hlu+ Aul(t) = Hu](t) + Au%[u]f/.

3. Now we can use directly the LRT result of the previous
problem, by making the identifications,

o(t) = Blul(t),  £(t) = A [u)(1).

and we arrive at:

Golul= [ dr S pler ).




Derivation

3 Show that, for pure systems
(plu](t) = |Pu](t))(¥[u](t)]), the previous result is:

oG tf o e N

S =2t [ 4 SR V19l
0 _ 3%t
X)) = —i [u](®)]x (1))

x(ty)) = AlP[ul(ty)),
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H(t) = Hy 4+ u(t)V

T
FV,u] = J;[¥(T)] +a/0 dt u?(t)

Glu] = F[¥[u], u]
This is a linear-quadratic problem whose solution verifies:

0G

Fuy = 2oul®) Imx(0)|V]¥(2)) = 0

Some of the most succesful algorithms originally developed
for QOCT (Krotov, Rabitz) assume this form. Cannot be
used for more general target definitions, especially if one
wishes to add constraints to the form of w.
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Femtosecond laser pulse shaping for enhanced

ionization

[AC, E. Rés3nen, A. Rubio, and E. K. U.
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Fig. 1: (Color online) Tonization probability for the initial pulse

es) and for the optimized pulse (squas

as a function of

the peak intensity of the initial pulse. The polarization of the

pulse is (a) parallel and (b) perpendicular to the molecule

>

Gross, EPL 87, 53001 (2009)]

Target: Maximal ionization
of H3 molecule (clamped
nuclei).

FW(T)] = (¥(T)[¥(T)) -
Pbouna (T[T

Use of absorbing boundary
conditions

Use of direct optimization
algorithm.

Expansion of control field
into a Fourier series =
automatic existence of a
frequency constraint.

Further constraints: total

length (5fs) and total fluence.
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Using a stringent frequency
cut-off, the optimization
attempts to build a peak with
maximum intensity. With
short, intense pulses, most
ionization occurs during the
maximum.

With parallel orientation,
zero carrier envelope phase
(half-cycle pulse), and 7/2
with perpendicular
orientation.
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Femtosecond laser pulse shaping for enhanced
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Fig. 4: (Color online) Upper panel: optimized laser pulse for the
is dwp » text) and the

ionization when the cutoff frequenc
intensity is fixed to 0.5 x 10" W /cm®. Lower panel: occupation

of a few lowest states during the pulse interaction.

» Higher cut-off frequency
implies more complicated
structure for the optimal
pulse.

» lonization is not a direct
ground-state to continuum
step.
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[E. Rasdnen, AC, J. Werschnik, A. Rubio, and E. K. U. Gross, Phys.

Rev. Lett. 98, 157404 (2007)]
» Electron trapped in a ring
edged into a 2D

Quantum optimal semiconductor
control theory @ ® [ s
us & ] heterostructure (2D electron
' { gas).
af * + la .
71 ol > Levels are coupled in a
o A consecutive fashion, ordered
by angular momentum.
£() 3 e f Y &
AR Eaa » Use of a two-component laser
FIG. 1 (color online). (a) Shape of the external confining pUlSe.
potential for a quantum ring and an example of a circularly
polarized laser field. (b) Energy-level spectrum of a quantum » The ta rget is the popu|ati0n
ring. The transitions are allowed along the dashed line so that
Al= =1 of any of the levels, from any

of the other levels (precise
control over the electronic
current).
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FIG. 3 (color online). Maximum occupation of the target state
in transition |1) — |2} as a function of the pulse length. The open
(blue) circles correspond to continueus waves and the filled (red)
circles to the optimal-control result. The insets show the den-
sities | W(T = 100)|> when the corresponding achieved occupa-
tions are (.99 and 0.9998 for these pulse types, respectively.

Optimal Control of Quantum Rings by Teraherz
Laser Pulses
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FIG. 4 (color online). Schematic picture of transitions from
I=—1tol=1(a)and from] = —2to ! = 2 (b) (upper panel),
optimized fields for these transitions (middle panel), and the
occupations of the states (lower panel).
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many-electron sys:

TDDFT in a nutshell

» Propagating the many-electron Schrédinger equation is
a computationally demanding task.

» Time-dependent density-functional theory substitutes it
by the set of “time-dependent Kohn-Sham equations’:

s 1
P = {—gvam £) + Hartreo 2] (7, £) + vxe [R](7, 1) + vext (7 8 u>] e
N
n(mt) = > 20ei(7 )7,

=1

» These are the equations of a non-interacting system of
electrons, whose time-dependent density is identical to
the real one.

> All observables are functionals of the time-dependent
one-electron density n, even if sometimes the functional
definition is unknown.
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QOCT + TDDFT

k endin;
PRL 109, 153603 (2012) PHYSICAL REVIEW LETTERS 12 OCTOBER 3012

Controlling the Dynamics of Many-Electron Systems from First Principles: A Combination
of Optimal Control and Time-Dependent Density-Functional Theory

A Cmm‘ J. Werschnik. and E. K. U. Gross®
'ARAID i 1 for and Physics of Complex Sysiems (BIFI)
and Zaragoza Scientific Center. fm Advanced Modeling (ZCAM), University of Zaragoza, E-50018 Zaragoza, Spain
2 Jenoptik Optical Systems GmbH, Jena, Germany
*Max-Planck-Institut fiir Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
(Received 14 September 2010; revised manuscript received 16 February 2012; published 12 October 2012)

Also in:

AC and E. K. U. Gross, “Quantum Optimal Control”, in “Fundamentals
of Time-Dependent Density Functional Theory”, edited by M.A.L.
Marques, N. Maitra, F. Nogueira, E.K.U Gross. and Angel Rubio
(Springer, Berlin, 2012), pages 265-276.
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QOCT + TDDFT

> We have a system of IV electrons, driven by an external
potential vVext (7, T, u).
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> We have a system of IV electrons, driven by an external
potential vVext (7, T, u).

» The time-dependent density is therefore determined by
w:

Alberto Castro

u — n[u](7, ) = (Clu]()[A(F)P[u](£))

Some theor;

QOCT for

many-electron systems
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dynamics

> We have a system of IV electrons, driven by an external
potential vVext (7, T, u).

» The time-dependent density is therefore determined by
w:

Alberto Castro

w — n[u](7,t) = (¥[u](t)|[A(7)|Y]u](t))
» The objective is to maximize some function G of the
control parameters u, defined in terms of a functional of

the density: )
Glu] = Fln[u],u].
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QOCT + TDDFT

| 2

>

We have a system of IV electrons, driven by an external
potential vVext (7, T, u).
The time-dependent density is therefore determined by
w:

w— nfu](7,t) = (¥[u] (t)[A(F) | ]u](t))

The objective is to maximize some function G of the
control parameters u, defined in terms of a functional of
the density:

Glu] = Fln[u],u].
Since the definition is given in terms of the density,
everything can be reformulated for the Kohn-Sham
system, and the optimization will be equivalent. Since
we use the Kohn-Sham substitution, we may use the
Kohn-Sham orbitals instead:

Flp[u],u] = Flnfu],u], n[u](Ft) = Z | [u] (7, £) 2.
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Optimal control theory equations for TDDFT (terminal target only):

VuGu] = VuFplu],u] +

2Im

N T R
Z/Odt <Ai[U](t)|VuH[n[U](t)7u,t}lw[?t](t»]

plul(t) = —iHn(t),u olul(t),

2,0 = ¢,

Mul(t) = i [An(t),u 1) + Klgul ()] Alul(t
AT = 2L (ofu)(T), u]




QOCT + TDDFT

Mu)(®)=—i [ [nfu] (t), u, 1] + Klplu] (1)]] Aul(),

Ailu] (8) = —iH [n[u)(t), u, ) ilu] () — ZZ Kijlp[u] ())A; [u (2)

(P [lul (]2 [w] (1)) =

—2ipi[u] (7, £)Tm [/dST'Aj [u]” (7', 8) frasce [n[u) ()] (7, 7 ) o5 [ (7, £)
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) He atom, EXX:
Alberto Castro ,
°r > Target: selective
N j 3 enhancement or quenching of
. 2
2 s
§ s

: i harmonics:

'I°T o

22 haa Flp] = Z Q Max {logyo H|¢](w)}
P’ wkwg

QOCT for -4

many-electron systems

1 5 913172125293337414549
Harmonic order

T g2
_ d® - —iwt (2
He atom, EXX, frozen H+XC' Hw) = |/0 RTE (A e ]

':7 B > Time-dependent target, it
] 2 depends on the full evolution
g L‘)‘W\ of the system.
£ 12 l TR » “TDDFT-friendly” target: it
1l #Hﬂ only depends on the
ar time-dependent density.

1 5 9 13 17 21 25 290 33 37 41 45 49
Harmonic order
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He atom, EXX: He atom, froze H+xc
Alberto Castro Harmonic order (w/wg) Harmonic order (w/wq)
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}A[[Qa b, u, t] = Hclas [Q»P, u, t]j + ﬁquantum[% b, u, t] .

chlas

Galt) = =5 —la®),p(t),v.1]

QOCT for hybrid
lassi

I N
aI_Iquantum

OPa lq(t), p(t),u, t]|¥(t))

()]

Palt) = _8g~’;qu<t>,p<t>,u,ﬂ
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Fln,q,p] = (p1(T)=p2(T))* + (01 (T) = p3(T))* — (52(T) —
Taser = 7 fs

Tpeax ~ 1.8 10"3W /cm®

Ecutor = 2.0 a.u. (100 degrees of freedom)

Alberto Castro

Laser polarization
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QOCT for hybrid
quantum-classical
systems

How fast can we (Coulomb) explode a metal
cluster

>

>

Coulomb explosion: fast strong ionization, followed by fast
disintegration of the system.

It can be helped with resonantly enhanced multi-photon
ionization: tuning of the laser pulse to some excitation (the
surface plasmon in the case of a cluster)

But:

> As the electrons disappear, the resonance frequency
blue-shifts.

> As the nuclei separate, the resonance frequency
red-shifts.

The topic was explored with the EMD-TDDFT model:

Impact of Ionic Motion on Ionization of Metal Clusters under Intense Laser Pulses

E. Suraud' and P.G. Reinhard®
! Laboratoire Physique Quantique, Université P. Sabatier, 118 Route de Narbonne, 31062 Toulouse, cedex, France
2institut fiir Theoretische Physik, Universitiit Erlangen, Staudtstrasse 7, D-91058 Erlangen, Germany
(Received 28 October 1999)

We discuss the impact of ionic motion on ionization of metal clusters subject to intense laser pulses
in a microscopic approach. We show that for long enough pulses, ionic expansion can drive the system
into resonance with the electronic plasmon resonance, which leads to a strongly enhanced ionization.



QOCT for

oAl How fast can we (Coulomb) explode a cluster

dynamics

Alberto Castro
Fln,qp) =~ [d*rn(F,T)  Taser ~ 16 fs
Ipeak =~ 1.0 10"*W /cm® Eeutot = 0.5 a.u.
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